A. Pusz, M. Wiśniewska, Arkadiusz Kamiński, Peter Knosala, D. Rogalski
{"title":"碳对金属稳定和降低土壤植物毒性的影响以及健康风险评估","authors":"A. Pusz, M. Wiśniewska, Arkadiusz Kamiński, Peter Knosala, D. Rogalski","doi":"10.3390/resources13050066","DOIUrl":null,"url":null,"abstract":"Despite notable achievements in the development and application of the remediation of metal-contaminated soils, the search for and study of promising immobilizing agents continues. This article presents a new approach to using brown coal and activated carbon and their application for metal stabilization. An experiment was conducted to test Medicago falcata L. on soils from industrial areas contaminated with varying levels of lead (Pb), cadmium (Cd), chromium (Cr), zinc (Zn), copper (Cu), and nickel (Ni) with the addition of carbons. This plant is a stress-tolerant leguminous species. In this study, the total content of metals in soil and the available forms to plants (single extractions with 0.02 M ethylenediaminetetraacetic acid, EDTA) were determined, along with metal contents in the plant. The use of carbons lowered the phytoavailable forms of metals for plants and thus, resulted in a reduction in the phytotoxicity of the soils. The contents of the tested metals in the roots and shoots were lower than in the combinations of soils with no carbon added. The activated carbon had a stronger effect on limiting the availability of metals than brown coal in relation to plants growing on soils without added carbon; the percentage of reduction for the shoots was Cr (18.2%) > Zn (11.5%) > Ni (10.7%) > Cu (10.3%) > Cd (8.9%) > Pb (2.4%) and Cu (13.3%) > Cr (12.5%) > Zn (10.5%) > Pb (9.0%) > Ni (5.7%) > Cd (4.6%) for roots. Metals reduced the growth of Medicago falcata L. roots from 44 to 21%, while the growth of shoots was reduced from 25 to 2%. Adding carbons to soils in all combinations resulted in a decrease in the following pollution indices: pollution index (PI), pollution load index (PLI), and non-carcinogenic (HQ) and carcinogenic risk factors (ILCR).","PeriodicalId":37723,"journal":{"name":"Resources","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Carbons on Metal Stabilization and the Reduction in Soil Phytotoxicity with the Assessment of Health Risks\",\"authors\":\"A. Pusz, M. Wiśniewska, Arkadiusz Kamiński, Peter Knosala, D. Rogalski\",\"doi\":\"10.3390/resources13050066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite notable achievements in the development and application of the remediation of metal-contaminated soils, the search for and study of promising immobilizing agents continues. This article presents a new approach to using brown coal and activated carbon and their application for metal stabilization. An experiment was conducted to test Medicago falcata L. on soils from industrial areas contaminated with varying levels of lead (Pb), cadmium (Cd), chromium (Cr), zinc (Zn), copper (Cu), and nickel (Ni) with the addition of carbons. This plant is a stress-tolerant leguminous species. In this study, the total content of metals in soil and the available forms to plants (single extractions with 0.02 M ethylenediaminetetraacetic acid, EDTA) were determined, along with metal contents in the plant. The use of carbons lowered the phytoavailable forms of metals for plants and thus, resulted in a reduction in the phytotoxicity of the soils. The contents of the tested metals in the roots and shoots were lower than in the combinations of soils with no carbon added. The activated carbon had a stronger effect on limiting the availability of metals than brown coal in relation to plants growing on soils without added carbon; the percentage of reduction for the shoots was Cr (18.2%) > Zn (11.5%) > Ni (10.7%) > Cu (10.3%) > Cd (8.9%) > Pb (2.4%) and Cu (13.3%) > Cr (12.5%) > Zn (10.5%) > Pb (9.0%) > Ni (5.7%) > Cd (4.6%) for roots. Metals reduced the growth of Medicago falcata L. roots from 44 to 21%, while the growth of shoots was reduced from 25 to 2%. Adding carbons to soils in all combinations resulted in a decrease in the following pollution indices: pollution index (PI), pollution load index (PLI), and non-carcinogenic (HQ) and carcinogenic risk factors (ILCR).\",\"PeriodicalId\":37723,\"journal\":{\"name\":\"Resources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.3390/resources13050066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3390/resources13050066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Influence of Carbons on Metal Stabilization and the Reduction in Soil Phytotoxicity with the Assessment of Health Risks
Despite notable achievements in the development and application of the remediation of metal-contaminated soils, the search for and study of promising immobilizing agents continues. This article presents a new approach to using brown coal and activated carbon and their application for metal stabilization. An experiment was conducted to test Medicago falcata L. on soils from industrial areas contaminated with varying levels of lead (Pb), cadmium (Cd), chromium (Cr), zinc (Zn), copper (Cu), and nickel (Ni) with the addition of carbons. This plant is a stress-tolerant leguminous species. In this study, the total content of metals in soil and the available forms to plants (single extractions with 0.02 M ethylenediaminetetraacetic acid, EDTA) were determined, along with metal contents in the plant. The use of carbons lowered the phytoavailable forms of metals for plants and thus, resulted in a reduction in the phytotoxicity of the soils. The contents of the tested metals in the roots and shoots were lower than in the combinations of soils with no carbon added. The activated carbon had a stronger effect on limiting the availability of metals than brown coal in relation to plants growing on soils without added carbon; the percentage of reduction for the shoots was Cr (18.2%) > Zn (11.5%) > Ni (10.7%) > Cu (10.3%) > Cd (8.9%) > Pb (2.4%) and Cu (13.3%) > Cr (12.5%) > Zn (10.5%) > Pb (9.0%) > Ni (5.7%) > Cd (4.6%) for roots. Metals reduced the growth of Medicago falcata L. roots from 44 to 21%, while the growth of shoots was reduced from 25 to 2%. Adding carbons to soils in all combinations resulted in a decrease in the following pollution indices: pollution index (PI), pollution load index (PLI), and non-carcinogenic (HQ) and carcinogenic risk factors (ILCR).
ResourcesEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.20
自引率
6.10%
发文量
0
审稿时长
11 weeks
期刊介绍:
Resources (ISSN 2079-9276) is an international, scholarly open access journal on the topic of natural resources. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and methodical details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: manuscripts regarding research proposals and research ideas will be particularly welcomed, electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Subject Areas: natural resources, water resources, mineral resources, energy resources, land resources, plant and animal resources, genetic resources, ecology resources, resource management and policy, resources conservation and recycling.