{"title":"碳纤维增强聚醚醚酮热塑性复合材料在激光辅助自动贴带过程中的热力耦合模拟","authors":"Cheng-Hao Zhang, Fei Wang, Cheng-Shuang Zhang, Yan-Ling Bao, Meng-Jie Wang, Dong Liu, Jing Wu, Zhong-Min Su","doi":"10.1177/14658011241253226","DOIUrl":null,"url":null,"abstract":"To reveal the thermal-force coupling characteristics of the laser in-situ consolidation (ISC) of carbon fibre-reinforced poly-ether-ether-ketone (CF/PEEK) composites, a two-dimensional transient thermal-force model of CF/PEEK composites was constructed using COMSOL Multiphysics finite element simulation software to calculate the temperature history and the thermal stress variation of CF/PEEK composites during the laser-assisted automated tape placement (LATP) process. The results show that the temperature field formed on the surface of each layer by the laser spot during LATP is stable, and the temperature gradient at the front of the spot movement direction is higher than that at the back edge. The maximum stresses in the laminate occur on both sides of the first CF/PEEK layer and the stresses are unevenly distributed along the length and thickness directions of the lay-up. The composite material on both sides of the laminate tends to ‘shrink’ compared to its original position.","PeriodicalId":518051,"journal":{"name":"Plastics, Rubber and Composites: Macromolecular Engineering","volume":" 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal-force coupling simulation of carbon fibre-reinforced poly-ether-ether-ketone thermoplastic composites during the laser-assisted automated tape placement process\",\"authors\":\"Cheng-Hao Zhang, Fei Wang, Cheng-Shuang Zhang, Yan-Ling Bao, Meng-Jie Wang, Dong Liu, Jing Wu, Zhong-Min Su\",\"doi\":\"10.1177/14658011241253226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To reveal the thermal-force coupling characteristics of the laser in-situ consolidation (ISC) of carbon fibre-reinforced poly-ether-ether-ketone (CF/PEEK) composites, a two-dimensional transient thermal-force model of CF/PEEK composites was constructed using COMSOL Multiphysics finite element simulation software to calculate the temperature history and the thermal stress variation of CF/PEEK composites during the laser-assisted automated tape placement (LATP) process. The results show that the temperature field formed on the surface of each layer by the laser spot during LATP is stable, and the temperature gradient at the front of the spot movement direction is higher than that at the back edge. The maximum stresses in the laminate occur on both sides of the first CF/PEEK layer and the stresses are unevenly distributed along the length and thickness directions of the lay-up. The composite material on both sides of the laminate tends to ‘shrink’ compared to its original position.\",\"PeriodicalId\":518051,\"journal\":{\"name\":\"Plastics, Rubber and Composites: Macromolecular Engineering\",\"volume\":\" 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plastics, Rubber and Composites: Macromolecular Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/14658011241253226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plastics, Rubber and Composites: Macromolecular Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14658011241253226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal-force coupling simulation of carbon fibre-reinforced poly-ether-ether-ketone thermoplastic composites during the laser-assisted automated tape placement process
To reveal the thermal-force coupling characteristics of the laser in-situ consolidation (ISC) of carbon fibre-reinforced poly-ether-ether-ketone (CF/PEEK) composites, a two-dimensional transient thermal-force model of CF/PEEK composites was constructed using COMSOL Multiphysics finite element simulation software to calculate the temperature history and the thermal stress variation of CF/PEEK composites during the laser-assisted automated tape placement (LATP) process. The results show that the temperature field formed on the surface of each layer by the laser spot during LATP is stable, and the temperature gradient at the front of the spot movement direction is higher than that at the back edge. The maximum stresses in the laminate occur on both sides of the first CF/PEEK layer and the stresses are unevenly distributed along the length and thickness directions of the lay-up. The composite material on both sides of the laminate tends to ‘shrink’ compared to its original position.