英格-迈尔斯阻抗边界条件的稳定化及其时域实施

IF 1.2 4区 工程技术 Q3 ACOUSTICS
Fang Q Hu, D. Nark
{"title":"英格-迈尔斯阻抗边界条件的稳定化及其时域实施","authors":"Fang Q Hu, D. Nark","doi":"10.1177/1475472x241230649","DOIUrl":null,"url":null,"abstract":"It has been well-known that the Ingard-Myers impedance condition, while simple to apply, is subject to the hydrodynamic Kelvin-Helmholtz-type instability due to its use of a vortex sheet in modeling the flow at the liner boundary. Recently, in the development of a time domain boundary element method for acoustic scattering by treated surfaces, it was found that by neglecting a certain second-order spatial derivative term in the Ingard-Myers formulation, the hydrodynamic instability can be avoided. The present paper aims to provide further analysis of this modified condition, hereby referred to as the Truncated Ingard-Myers Impedance Boundary Condition (TIMIBC). It will be shown, based on the dispersion relations of linear waves, that the instability intrinsic to the Ingard-Myers condition is eliminated in the proposed new formulation. Quantitative assessments on the accuracy of the TIMIBC for scattering of acoustic waves by lined surfaces are carried out, and its effectiveness is demonstrated by a numerical example. It is found that the TIMIBC provides a good approximation to the original Ingard-Myers condition for flows of low to mid subsonic Mach numbers. As such, the proposed TIMIBC can offer a practical solution for overcoming the intrinsic instability associated with the Ingard-Myers condition. Moreover, time domain implementation of the TIMIBC is also discussed and illustrated with a numerical example using a finite difference scheme. In particular, a minimization procedure for finding the poles and coefficients of a broadband multipole expansion for the impedance function is formulated by which, unlike the commonly used vector-fitting method, passivity of the model is ensured.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a stabilization of the Ingard-Myers impedance boundary condition and its time domain implementation\",\"authors\":\"Fang Q Hu, D. Nark\",\"doi\":\"10.1177/1475472x241230649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been well-known that the Ingard-Myers impedance condition, while simple to apply, is subject to the hydrodynamic Kelvin-Helmholtz-type instability due to its use of a vortex sheet in modeling the flow at the liner boundary. Recently, in the development of a time domain boundary element method for acoustic scattering by treated surfaces, it was found that by neglecting a certain second-order spatial derivative term in the Ingard-Myers formulation, the hydrodynamic instability can be avoided. The present paper aims to provide further analysis of this modified condition, hereby referred to as the Truncated Ingard-Myers Impedance Boundary Condition (TIMIBC). It will be shown, based on the dispersion relations of linear waves, that the instability intrinsic to the Ingard-Myers condition is eliminated in the proposed new formulation. Quantitative assessments on the accuracy of the TIMIBC for scattering of acoustic waves by lined surfaces are carried out, and its effectiveness is demonstrated by a numerical example. It is found that the TIMIBC provides a good approximation to the original Ingard-Myers condition for flows of low to mid subsonic Mach numbers. As such, the proposed TIMIBC can offer a practical solution for overcoming the intrinsic instability associated with the Ingard-Myers condition. Moreover, time domain implementation of the TIMIBC is also discussed and illustrated with a numerical example using a finite difference scheme. In particular, a minimization procedure for finding the poles and coefficients of a broadband multipole expansion for the impedance function is formulated by which, unlike the commonly used vector-fitting method, passivity of the model is ensured.\",\"PeriodicalId\":49304,\"journal\":{\"name\":\"International Journal of Aeroacoustics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aeroacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1475472x241230649\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1475472x241230649","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,Ingard-Myers 阻抗条件虽然简单易用,但由于其使用了涡流片来模拟衬垫边界的流动,因此会受到流体力学开尔文-赫尔姆霍兹型不稳定性的影响。最近,在开发用于处理表面声散射的时域边界元方法时发现,通过忽略 Ingard-Myers 公式中的某个二阶空间导数项,可以避免流体力学不稳定性。本文旨在进一步分析这一修改后的条件,即截断英加-迈尔斯阻抗边界条件(TIMIBC)。根据线性波的频散关系,本文将证明英加-迈尔斯条件所固有的不稳定性在所提出的新公式中已被消除。对 TIMIBC 用于衬里表面声波散射的准确性进行了定量评估,并通过一个数值示例证明了它的有效性。结果发现,TIMIBC 可以很好地近似原始的 Ingard-Myers 条件,适用于中低亚音速马赫数的流动。因此,建议的 TIMIBC 可以为克服与 Ingard-Myers 条件相关的内在不稳定性提供实用的解决方案。此外,还讨论了 TIMIBC 的时域实现,并通过一个使用有限差分方案的数值示例进行了说明。与常用的矢量拟合方法不同,该方法可确保模型的被动性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a stabilization of the Ingard-Myers impedance boundary condition and its time domain implementation
It has been well-known that the Ingard-Myers impedance condition, while simple to apply, is subject to the hydrodynamic Kelvin-Helmholtz-type instability due to its use of a vortex sheet in modeling the flow at the liner boundary. Recently, in the development of a time domain boundary element method for acoustic scattering by treated surfaces, it was found that by neglecting a certain second-order spatial derivative term in the Ingard-Myers formulation, the hydrodynamic instability can be avoided. The present paper aims to provide further analysis of this modified condition, hereby referred to as the Truncated Ingard-Myers Impedance Boundary Condition (TIMIBC). It will be shown, based on the dispersion relations of linear waves, that the instability intrinsic to the Ingard-Myers condition is eliminated in the proposed new formulation. Quantitative assessments on the accuracy of the TIMIBC for scattering of acoustic waves by lined surfaces are carried out, and its effectiveness is demonstrated by a numerical example. It is found that the TIMIBC provides a good approximation to the original Ingard-Myers condition for flows of low to mid subsonic Mach numbers. As such, the proposed TIMIBC can offer a practical solution for overcoming the intrinsic instability associated with the Ingard-Myers condition. Moreover, time domain implementation of the TIMIBC is also discussed and illustrated with a numerical example using a finite difference scheme. In particular, a minimization procedure for finding the poles and coefficients of a broadband multipole expansion for the impedance function is formulated by which, unlike the commonly used vector-fitting method, passivity of the model is ensured.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Aeroacoustics
International Journal of Aeroacoustics ACOUSTICS-ENGINEERING, AEROSPACE
CiteScore
2.10
自引率
10.00%
发文量
38
审稿时长
>12 weeks
期刊介绍: International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published. Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信