利用监督机器学习分析阿巴克尔组地震尺度岩相变异特征:堪萨斯州威灵顿油田

A. Caf, D. Lubo-Robles, K. Marfurt, H. Bedle, M. Pranter
{"title":"利用监督机器学习分析阿巴克尔组地震尺度岩相变异特征:堪萨斯州威灵顿油田","authors":"A. Caf, D. Lubo-Robles, K. Marfurt, H. Bedle, M. Pranter","doi":"10.1190/int-2023-0093.1","DOIUrl":null,"url":null,"abstract":"The Arbuckle Group in southern Kansas has been investigated for carbon geosequestration-related studies. In this study, we evaluated seismic-scale petrophysically defined facies variability of the Arbuckle Group at the Wellington Field, Kansas, using quantitative seismic interpretation and a supervised Random Forest classification approach. We first defined three petrophysics-based rock types (petrofacies) from core-derived porosity and permeability measurements using the flow-zone indicator (FZI) approach. Then, using the artificial neural network (ANN), we classified these petrofacies in non-cored intervals. We observed that petrofacies 1 corresponds to medium and coarse-grained dolomitic packstone, wackestone, and dolomitic breccia with up to 8% porosity and Darcy-scale permeability values. Whereas petrofacies 2 and 3 correspond to argillaceous and fine-grained micritic dolomites and dolomitic mudstones with lower permeability values for a given porosity, with respect to petrofacies 1. Using the common reflection-point gathers, we performed pre-stack seismic inversion and calculated various amplitude-versus-offset (AVO) attribute volumes. We used these elastic properties and AVO attribute volumes as input for estimating supervised seismic-scale 3D petrofacies and petrofacies probability volumes using the Random Forest algorithm. Results reveal the complex distribution of petrofacies in the candidate injection and baffle zones in the study area, where petrofacies 1 is mainly prevalent within the lower and upper portions of the Arbuckle group, while petrofacies 2 and 3 are mainly present in the middle Arbuckle interval. The workflow we present through this study provides spatial variability of facies distribution that is reflective of actual lithology and petrophysical properties of the Arbuckle group in the study area with limited well control.","PeriodicalId":502519,"journal":{"name":"Interpretation","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of seismic-scale petrofacies variability in the Arbuckle Group using supervised machine learning: Wellington Field, Kansas\",\"authors\":\"A. Caf, D. Lubo-Robles, K. Marfurt, H. Bedle, M. Pranter\",\"doi\":\"10.1190/int-2023-0093.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Arbuckle Group in southern Kansas has been investigated for carbon geosequestration-related studies. In this study, we evaluated seismic-scale petrophysically defined facies variability of the Arbuckle Group at the Wellington Field, Kansas, using quantitative seismic interpretation and a supervised Random Forest classification approach. We first defined three petrophysics-based rock types (petrofacies) from core-derived porosity and permeability measurements using the flow-zone indicator (FZI) approach. Then, using the artificial neural network (ANN), we classified these petrofacies in non-cored intervals. We observed that petrofacies 1 corresponds to medium and coarse-grained dolomitic packstone, wackestone, and dolomitic breccia with up to 8% porosity and Darcy-scale permeability values. Whereas petrofacies 2 and 3 correspond to argillaceous and fine-grained micritic dolomites and dolomitic mudstones with lower permeability values for a given porosity, with respect to petrofacies 1. Using the common reflection-point gathers, we performed pre-stack seismic inversion and calculated various amplitude-versus-offset (AVO) attribute volumes. We used these elastic properties and AVO attribute volumes as input for estimating supervised seismic-scale 3D petrofacies and petrofacies probability volumes using the Random Forest algorithm. Results reveal the complex distribution of petrofacies in the candidate injection and baffle zones in the study area, where petrofacies 1 is mainly prevalent within the lower and upper portions of the Arbuckle group, while petrofacies 2 and 3 are mainly present in the middle Arbuckle interval. The workflow we present through this study provides spatial variability of facies distribution that is reflective of actual lithology and petrophysical properties of the Arbuckle group in the study area with limited well control.\",\"PeriodicalId\":502519,\"journal\":{\"name\":\"Interpretation\",\"volume\":\" 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interpretation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/int-2023-0093.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interpretation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/int-2023-0093.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

堪萨斯州南部的阿巴克尔组一直在进行与碳地质封存相关的研究。在这项研究中,我们采用定量地震解释和有监督的随机森林分类方法,对堪萨斯州威灵顿油田阿巴克尔组的地震尺度岩石物理定义岩层变异性进行了评估。我们首先使用流区指示器(FZI)方法,根据岩心获得的孔隙度和渗透率测量结果,定义了三种基于岩石物理学的岩石类型(岩相)。然后,我们利用人工神经网络(ANN)将这些岩相划分为无刻度区间。我们发现,岩相 1 与中粒和粗粒白云质包岩、瓦基岩和白云质角砾岩相对应,其孔隙度和达西尺度渗透率值高达 8%。岩相 2 和岩相 3 与霰粒状和细粒微晶白云岩和白云质泥岩相对应,与岩相 1 相比,在一定孔隙度下具有较低的渗透值。利用普通反射点采集,我们进行了叠前地震反演,并计算了各种振幅-偏移(AVO)属性量。我们将这些弹性属性和 AVO 属性卷作为输入,使用随机森林算法估算地震尺度三维岩相和岩相概率卷。结果显示,岩性在研究区域的候选注入区和挡板区分布复杂,其中岩性 1 主要分布在阿巴克尔组的下部和上部,而岩性 2 和岩性 3 主要分布在阿巴克尔组的中部。我们通过这项研究提出的工作流程提供了岩层分布的空间变异性,反映了研究区域阿巴克尔组的实际岩性和岩石物理特性,但油井控制有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of seismic-scale petrofacies variability in the Arbuckle Group using supervised machine learning: Wellington Field, Kansas
The Arbuckle Group in southern Kansas has been investigated for carbon geosequestration-related studies. In this study, we evaluated seismic-scale petrophysically defined facies variability of the Arbuckle Group at the Wellington Field, Kansas, using quantitative seismic interpretation and a supervised Random Forest classification approach. We first defined three petrophysics-based rock types (petrofacies) from core-derived porosity and permeability measurements using the flow-zone indicator (FZI) approach. Then, using the artificial neural network (ANN), we classified these petrofacies in non-cored intervals. We observed that petrofacies 1 corresponds to medium and coarse-grained dolomitic packstone, wackestone, and dolomitic breccia with up to 8% porosity and Darcy-scale permeability values. Whereas petrofacies 2 and 3 correspond to argillaceous and fine-grained micritic dolomites and dolomitic mudstones with lower permeability values for a given porosity, with respect to petrofacies 1. Using the common reflection-point gathers, we performed pre-stack seismic inversion and calculated various amplitude-versus-offset (AVO) attribute volumes. We used these elastic properties and AVO attribute volumes as input for estimating supervised seismic-scale 3D petrofacies and petrofacies probability volumes using the Random Forest algorithm. Results reveal the complex distribution of petrofacies in the candidate injection and baffle zones in the study area, where petrofacies 1 is mainly prevalent within the lower and upper portions of the Arbuckle group, while petrofacies 2 and 3 are mainly present in the middle Arbuckle interval. The workflow we present through this study provides spatial variability of facies distribution that is reflective of actual lithology and petrophysical properties of the Arbuckle group in the study area with limited well control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信