一类非紧凑高杜洪流形上的扭转曲束上的典范度量

Axioms Pub Date : 2024-05-09 DOI:10.3390/axioms13050312
Shi-Fan Cai, S. Chaubey, Xin Xu, Pan Zhang, Zhi-Heng Zhang
{"title":"一类非紧凑高杜洪流形上的扭转曲束上的典范度量","authors":"Shi-Fan Cai, S. Chaubey, Xin Xu, Pan Zhang, Zhi-Heng Zhang","doi":"10.3390/axioms13050312","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to prove a theorem for holomorphic twisted quiver bundles over a special non-compact Gauduchon manifold, connecting the existence of (σ,τ)-Hermite–Yang–Mills metric in differential geometry and the analytic (σ,τ)-stability in algebraic geometry. The proof of the theorem relies on the flow method and the Uhlenbeck–Yau’s continuity method.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":" 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Canonical Metrics on Twisted Quiver Bundles over a Class of Non-Compact Gauduchon Manifold\",\"authors\":\"Shi-Fan Cai, S. Chaubey, Xin Xu, Pan Zhang, Zhi-Heng Zhang\",\"doi\":\"10.3390/axioms13050312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to prove a theorem for holomorphic twisted quiver bundles over a special non-compact Gauduchon manifold, connecting the existence of (σ,τ)-Hermite–Yang–Mills metric in differential geometry and the analytic (σ,τ)-stability in algebraic geometry. The proof of the theorem relies on the flow method and the Uhlenbeck–Yau’s continuity method.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\" 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13050312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13050312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在证明特殊非紧密高都松流形上的全形扭曲四维束的一个定理,将微分几何学中的(σ,τ)-赫米特-杨-米尔斯公设的存在与代数几何学中的(σ,τ)-解析稳定性联系起来。定理的证明依赖于流动方法和乌伦贝克-尤氏连续性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canonical Metrics on Twisted Quiver Bundles over a Class of Non-Compact Gauduchon Manifold
The aim of this paper is to prove a theorem for holomorphic twisted quiver bundles over a special non-compact Gauduchon manifold, connecting the existence of (σ,τ)-Hermite–Yang–Mills metric in differential geometry and the analytic (σ,τ)-stability in algebraic geometry. The proof of the theorem relies on the flow method and the Uhlenbeck–Yau’s continuity method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信