Cloning, Characterization and Functional Analysis of Caspase 8-like Gene in Apoptosis of Crassostrea hongkongensis Response to Hyper-Salinity Stress(类似 Caspase 8 基因在香港鲫鱼高盐度应激凋亡中的克隆、特征和功能分析
{"title":"Cloning, Characterization and Functional Analysis of Caspase 8-like Gene in Apoptosis of Crassostrea hongkongensis Response to Hyper-Salinity Stress(类似 Caspase 8 基因在香港鲫鱼高盐度应激凋亡中的克隆、特征和功能分析","authors":"Jinji Lin, Ziqi Yu, Yang Leng, Jiexiong Zhu, Feifei Yu, Yishan Lu, Jiayu Chen, Wenhao He, Yixin Zhang, Yaoshen Wen","doi":"10.3390/fishes9050172","DOIUrl":null,"url":null,"abstract":"Caspase-8, a member of the caspase family, is an initiating caspase and plays a crucial role in apoptosis. In this study, the full-length cDNA of caspase8-like (CASP8-like) was isolated from Crassostrea hongkongensis (C. hongkongensis) by RACE-PCR. ChCASP8-like contained a 1599-bp open reading frame (ORF) encoding 533 amino acids with two conserved death effector domains (DEDs) and a cysteine aspartase cysteine structural domain (CASc). Amino acid sequence comparison showed that ChCASP8-like shared the highest identity (85.4%) with CASP8-like of C. angulata. The tissue expression profile showed that ChCASP8-like was constitutively expressed in gills, hepatopancreas, mantle, adductor muscle, hemocytes and gonads, and was significantly upregulated in hemocytes, hepatopancreas and gills under hyper-salinity stress. The apoptosis-related genes, including ATR, CHK1, BCL-XL, CASP8-like, CASP9 and CASP3, were significantly activated by hyper-salinity stress, but were remarkably inhibited by ChCASP8-like silencing. The caspase 8 activity was increased by 1.7-fold after hyper-salinity stress, and was inhibited by 9.4% by ChCASP8-like silencing. Moreover, ChCASP8-like silencing clearly alleviated the apoptosis resulting from hyper-salinity stress. These results collectively demonstrated that ChCASP8-like played a crucial role in inducing apoptosis against hyper-salinity stress.","PeriodicalId":505604,"journal":{"name":"Fishes","volume":" 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cloning, Characterization and Functional Analysis of Caspase 8-like Gene in Apoptosis of Crassostrea hongkongensis Response to Hyper-Salinity Stress\",\"authors\":\"Jinji Lin, Ziqi Yu, Yang Leng, Jiexiong Zhu, Feifei Yu, Yishan Lu, Jiayu Chen, Wenhao He, Yixin Zhang, Yaoshen Wen\",\"doi\":\"10.3390/fishes9050172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Caspase-8, a member of the caspase family, is an initiating caspase and plays a crucial role in apoptosis. In this study, the full-length cDNA of caspase8-like (CASP8-like) was isolated from Crassostrea hongkongensis (C. hongkongensis) by RACE-PCR. ChCASP8-like contained a 1599-bp open reading frame (ORF) encoding 533 amino acids with two conserved death effector domains (DEDs) and a cysteine aspartase cysteine structural domain (CASc). Amino acid sequence comparison showed that ChCASP8-like shared the highest identity (85.4%) with CASP8-like of C. angulata. The tissue expression profile showed that ChCASP8-like was constitutively expressed in gills, hepatopancreas, mantle, adductor muscle, hemocytes and gonads, and was significantly upregulated in hemocytes, hepatopancreas and gills under hyper-salinity stress. The apoptosis-related genes, including ATR, CHK1, BCL-XL, CASP8-like, CASP9 and CASP3, were significantly activated by hyper-salinity stress, but were remarkably inhibited by ChCASP8-like silencing. The caspase 8 activity was increased by 1.7-fold after hyper-salinity stress, and was inhibited by 9.4% by ChCASP8-like silencing. Moreover, ChCASP8-like silencing clearly alleviated the apoptosis resulting from hyper-salinity stress. These results collectively demonstrated that ChCASP8-like played a crucial role in inducing apoptosis against hyper-salinity stress.\",\"PeriodicalId\":505604,\"journal\":{\"name\":\"Fishes\",\"volume\":\" 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fishes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fishes9050172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fishes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fishes9050172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cloning, Characterization and Functional Analysis of Caspase 8-like Gene in Apoptosis of Crassostrea hongkongensis Response to Hyper-Salinity Stress
Caspase-8, a member of the caspase family, is an initiating caspase and plays a crucial role in apoptosis. In this study, the full-length cDNA of caspase8-like (CASP8-like) was isolated from Crassostrea hongkongensis (C. hongkongensis) by RACE-PCR. ChCASP8-like contained a 1599-bp open reading frame (ORF) encoding 533 amino acids with two conserved death effector domains (DEDs) and a cysteine aspartase cysteine structural domain (CASc). Amino acid sequence comparison showed that ChCASP8-like shared the highest identity (85.4%) with CASP8-like of C. angulata. The tissue expression profile showed that ChCASP8-like was constitutively expressed in gills, hepatopancreas, mantle, adductor muscle, hemocytes and gonads, and was significantly upregulated in hemocytes, hepatopancreas and gills under hyper-salinity stress. The apoptosis-related genes, including ATR, CHK1, BCL-XL, CASP8-like, CASP9 and CASP3, were significantly activated by hyper-salinity stress, but were remarkably inhibited by ChCASP8-like silencing. The caspase 8 activity was increased by 1.7-fold after hyper-salinity stress, and was inhibited by 9.4% by ChCASP8-like silencing. Moreover, ChCASP8-like silencing clearly alleviated the apoptosis resulting from hyper-salinity stress. These results collectively demonstrated that ChCASP8-like played a crucial role in inducing apoptosis against hyper-salinity stress.