基于级联哈希和局部几何约束的大规模图像高效特征匹配

Kan You, San Jiang, Yaxin Li, Wanshou Jiang, Xiangxiang Huang
{"title":"基于级联哈希和局部几何约束的大规模图像高效特征匹配","authors":"Kan You, San Jiang, Yaxin Li, Wanshou Jiang, Xiangxiang Huang","doi":"10.5194/isprs-annals-x-1-2024-289-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Feature matching plays a crucial role in 3D reconstruction to provide correspondences between overlapped images. The accuracy and efficiency of feature matching significantly impact the performance of 3D reconstruction. The widely used framework with the exhaustive nearest neighbor searching (NNS) between descriptors and RANSAC-based geometric estimation is, however, low-efficient and unreliable for large-scale UAV images. Inspired by indexing-based NNS, this paper implements an efficient feature matching method for large-scale images based on Cascade Hashing and local geometric constraints. Our proposed method improves upon traditional feature matching approaches by introducing a combination of image retrieval, data scheduling, and GPU-accelerated Cascade Hashing. Besides, it utilizes a local geometric constraint to filter matching results within a matching framework. On the one hand, the GPU-accelerated Cascade Hashing technique generates compact and discriminative hash codes based on image features, facilitating the rapid completion of the initial matching process, and significantly reducing the search space and time complexity. On the other hand, after the initial matching is completed, the method employs a local geometric constraint to filter the initial matching results, enhancing the accuracy of the matching results. This forms a three-tier framework based on data scheduling, GPU-accelerated Cascade Hashing, and local geometric constraints. We conducted experiments using two sets of large-scale UAV image data, comparing our method with SIFTGPU to evaluate its performance in initial matching, outlier rejection, and 3D reconstruction. The results demonstrate that our method achieves a feature matching speed 2.0 times that of SIFTGPU while maintaining matching accuracy and producing comparable reconstruction results. This suggests that our method holds promise for efficiently addressing large-scale image matching.\n","PeriodicalId":508124,"journal":{"name":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Feature Matching for Large-scale Images based on Cascade Hash and Local Geometric Constraint\",\"authors\":\"Kan You, San Jiang, Yaxin Li, Wanshou Jiang, Xiangxiang Huang\",\"doi\":\"10.5194/isprs-annals-x-1-2024-289-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Feature matching plays a crucial role in 3D reconstruction to provide correspondences between overlapped images. The accuracy and efficiency of feature matching significantly impact the performance of 3D reconstruction. The widely used framework with the exhaustive nearest neighbor searching (NNS) between descriptors and RANSAC-based geometric estimation is, however, low-efficient and unreliable for large-scale UAV images. Inspired by indexing-based NNS, this paper implements an efficient feature matching method for large-scale images based on Cascade Hashing and local geometric constraints. Our proposed method improves upon traditional feature matching approaches by introducing a combination of image retrieval, data scheduling, and GPU-accelerated Cascade Hashing. Besides, it utilizes a local geometric constraint to filter matching results within a matching framework. On the one hand, the GPU-accelerated Cascade Hashing technique generates compact and discriminative hash codes based on image features, facilitating the rapid completion of the initial matching process, and significantly reducing the search space and time complexity. On the other hand, after the initial matching is completed, the method employs a local geometric constraint to filter the initial matching results, enhancing the accuracy of the matching results. This forms a three-tier framework based on data scheduling, GPU-accelerated Cascade Hashing, and local geometric constraints. We conducted experiments using two sets of large-scale UAV image data, comparing our method with SIFTGPU to evaluate its performance in initial matching, outlier rejection, and 3D reconstruction. The results demonstrate that our method achieves a feature matching speed 2.0 times that of SIFTGPU while maintaining matching accuracy and producing comparable reconstruction results. This suggests that our method holds promise for efficiently addressing large-scale image matching.\\n\",\"PeriodicalId\":508124,\"journal\":{\"name\":\"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\" 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-annals-x-1-2024-289-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-annals-x-1-2024-289-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要特征匹配在三维重建中起着至关重要的作用,它能提供重叠图像之间的对应关系。特征匹配的准确性和效率极大地影响着三维重建的性能。然而,对于大规模无人机图像而言,描述符之间的穷举近邻搜索(NNS)和基于 RANSAC 的几何估计等广泛使用的框架效率低且不可靠。受基于索引的近邻搜索的启发,本文基于级联散列和局部几何约束,为大规模图像实现了一种高效的特征匹配方法。我们提出的方法将图像检索、数据调度和 GPU 加速级联散列相结合,改进了传统的特征匹配方法。此外,它还利用局部几何约束在匹配框架内过滤匹配结果。一方面,GPU 加速级联散列技术可根据图像特征生成紧凑且具有区分度的散列码,从而有助于快速完成初始匹配过程,并显著降低搜索空间和时间复杂度。另一方面,在初始匹配完成后,该方法采用局部几何约束对初始匹配结果进行过滤,提高了匹配结果的准确性。这就形成了一个基于数据调度、GPU 加速级联散列和局部几何约束的三层框架。我们使用两组大规模无人机图像数据进行了实验,将我们的方法与 SIFTGPU 进行了比较,以评估其在初始匹配、异常值剔除和三维重建方面的性能。结果表明,我们的方法的特征匹配速度是 SIFTGPU 的 2.0 倍,同时保持了匹配精度,并产生了可比的重建结果。这表明我们的方法有望有效解决大规模图像匹配问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Feature Matching for Large-scale Images based on Cascade Hash and Local Geometric Constraint
Abstract. Feature matching plays a crucial role in 3D reconstruction to provide correspondences between overlapped images. The accuracy and efficiency of feature matching significantly impact the performance of 3D reconstruction. The widely used framework with the exhaustive nearest neighbor searching (NNS) between descriptors and RANSAC-based geometric estimation is, however, low-efficient and unreliable for large-scale UAV images. Inspired by indexing-based NNS, this paper implements an efficient feature matching method for large-scale images based on Cascade Hashing and local geometric constraints. Our proposed method improves upon traditional feature matching approaches by introducing a combination of image retrieval, data scheduling, and GPU-accelerated Cascade Hashing. Besides, it utilizes a local geometric constraint to filter matching results within a matching framework. On the one hand, the GPU-accelerated Cascade Hashing technique generates compact and discriminative hash codes based on image features, facilitating the rapid completion of the initial matching process, and significantly reducing the search space and time complexity. On the other hand, after the initial matching is completed, the method employs a local geometric constraint to filter the initial matching results, enhancing the accuracy of the matching results. This forms a three-tier framework based on data scheduling, GPU-accelerated Cascade Hashing, and local geometric constraints. We conducted experiments using two sets of large-scale UAV image data, comparing our method with SIFTGPU to evaluate its performance in initial matching, outlier rejection, and 3D reconstruction. The results demonstrate that our method achieves a feature matching speed 2.0 times that of SIFTGPU while maintaining matching accuracy and producing comparable reconstruction results. This suggests that our method holds promise for efficiently addressing large-scale image matching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信