Indranil Biswas, S. Senthamarai Kannan, Pinakinath Saha
{"title":"论博特-萨梅尔森-德马祖尔-汉森变项反规范束的几何图形","authors":"Indranil Biswas, S. Senthamarai Kannan, Pinakinath Saha","doi":"10.1007/s10114-024-2739-4","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a semi-simple simply connected algebraic group over the field ℂ of complex numbers. Let <i>T</i> be a maximal torus of <i>G</i>, and let <i>W</i> be the Weyl group of <i>G</i> with respect to <i>T</i>. Let <i>Z</i>(<i>w</i>, <i><u>i</u></i>) be the Bott-Samelson-Demazure-Hansen variety corresponding to a tuple <i><u>i</u></i> associated to a reduced expression of an element <i>w</i> ∈ <i>W</i>. We prove that for the tuple <i><u>i</u></i> associated to any reduced expression of a minuscule Weyl group element <i>w</i>, the anti-canonical line bundle on <i>Z</i>(<i>w</i>, <i><u>i</u></i>) is globally generated. As consequence, we prove that <i>Z</i>(<i>w</i>, <i><u>i</u></i>) is weak Fano.</p><p>Assume that <i>G</i> is a simple algebraic group whose type is different from <i>A</i><sub>2</sub>. Let <i>S</i> = {<i>α</i><sub>1</sub>, …, <i>α</i><sub><i>n</i></sub>} be the set of simple roots. Let <i>w</i> be such that support of <i>w</i> is equal to <i>S</i>. We prove that <i>Z</i>(<i>w</i>, <i><u>i</u></i>) is Fano for the tuple <i><u>i</u></i> associated to any reduced expression of <i>w</i> if and only if <i>w</i> is a Coxeter element and <span>\\({w^{ - 1}}(\\sum\\nolimits_{t = 1}^n {{\\alpha _t}) \\in - S} \\)</span>.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 8","pages":"1920 - 1940"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Geometry of the Anti-canonical Bundle of the Bott-Samelson-Demazure-Hansen Varieties\",\"authors\":\"Indranil Biswas, S. Senthamarai Kannan, Pinakinath Saha\",\"doi\":\"10.1007/s10114-024-2739-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>G</i> be a semi-simple simply connected algebraic group over the field ℂ of complex numbers. Let <i>T</i> be a maximal torus of <i>G</i>, and let <i>W</i> be the Weyl group of <i>G</i> with respect to <i>T</i>. Let <i>Z</i>(<i>w</i>, <i><u>i</u></i>) be the Bott-Samelson-Demazure-Hansen variety corresponding to a tuple <i><u>i</u></i> associated to a reduced expression of an element <i>w</i> ∈ <i>W</i>. We prove that for the tuple <i><u>i</u></i> associated to any reduced expression of a minuscule Weyl group element <i>w</i>, the anti-canonical line bundle on <i>Z</i>(<i>w</i>, <i><u>i</u></i>) is globally generated. As consequence, we prove that <i>Z</i>(<i>w</i>, <i><u>i</u></i>) is weak Fano.</p><p>Assume that <i>G</i> is a simple algebraic group whose type is different from <i>A</i><sub>2</sub>. Let <i>S</i> = {<i>α</i><sub>1</sub>, …, <i>α</i><sub><i>n</i></sub>} be the set of simple roots. Let <i>w</i> be such that support of <i>w</i> is equal to <i>S</i>. We prove that <i>Z</i>(<i>w</i>, <i><u>i</u></i>) is Fano for the tuple <i><u>i</u></i> associated to any reduced expression of <i>w</i> if and only if <i>w</i> is a Coxeter element and <span>\\\\({w^{ - 1}}(\\\\sum\\\\nolimits_{t = 1}^n {{\\\\alpha _t}) \\\\in - S} \\\\)</span>.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"40 8\",\"pages\":\"1920 - 1940\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-2739-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2739-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 G 是复数域 ℂ 上的半简简单连接代数群。让 T 是 G 的最大环,让 W 是 G 关于 T 的韦尔群。让 Z(w, i) 是与元素 w∈W 的还原表达式相关联的元组 i 所对应的博特-萨梅尔松-德马祖尔-汉森(Bott-Samelson-Demazure-Hansen)簇。我们证明,对于与微韦尔群元素 w 的任何还原表达式相关联的元组 i,Z(w, i) 上的反规范线束是全局生成的。因此,我们证明 Z(w, i) 是弱法诺。假设 G 是一个类型不同于 A2 的简单代数群。设 S = {α1, ..., αn} 为单根集。当且仅当 w 是一个考斯特元素且 \({w^{ - 1}}(\sum\nolimits_{t = 1}^n {{\alpha _t}) \in - S} 时,我们证明 Z(w, i) 对于与 w 的任何简化表达式相关联的元组 i 来说是 Fano 的。\).
On the Geometry of the Anti-canonical Bundle of the Bott-Samelson-Demazure-Hansen Varieties
Let G be a semi-simple simply connected algebraic group over the field ℂ of complex numbers. Let T be a maximal torus of G, and let W be the Weyl group of G with respect to T. Let Z(w, i) be the Bott-Samelson-Demazure-Hansen variety corresponding to a tuple i associated to a reduced expression of an element w ∈ W. We prove that for the tuple i associated to any reduced expression of a minuscule Weyl group element w, the anti-canonical line bundle on Z(w, i) is globally generated. As consequence, we prove that Z(w, i) is weak Fano.
Assume that G is a simple algebraic group whose type is different from A2. Let S = {α1, …, αn} be the set of simple roots. Let w be such that support of w is equal to S. We prove that Z(w, i) is Fano for the tuple i associated to any reduced expression of w if and only if w is a Coxeter element and \({w^{ - 1}}(\sum\nolimits_{t = 1}^n {{\alpha _t}) \in - S} \).
期刊介绍:
Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.