{"title":"斜线性群中卷积的换元积","authors":"Nguyen Thi Thai Ha, Phan Hoang Nam, Tran Nam Son","doi":"10.1007/s40306-024-00532-w","DOIUrl":null,"url":null,"abstract":"<div><p>In connection with [Theorem 4.6, Linear Algebra Appl. <b>646</b>, 119–131, (2022)], we show that each matrix in the commutator subgroup of the general linear group over a centrally-finite division ring <i>D</i>, in which each element in the commutator subgroup of <i>D</i> is a product of at most <i>s</i> commutators, can be written as a product of at most <span>\\(3+3\\left\\lceil \\frac{s}{\\lfloor n/2 \\rfloor } \\right\\rceil \\)</span> commutators of involutions if <span>\\(\\mathrm {char\\,}D\\ne 2\\)</span>, where <span>\\({\\displaystyle \\lceil x \\rceil }\\)</span>, <span>\\({\\displaystyle \\lfloor x \\rfloor }\\)</span> denote the ceiling and floor functions of <i>x</i>, respectively. Moreover, we also present the special case when <span>\\(D= \\mathbb {H}\\)</span>, the division ring of quaternions, and an application in real group algebras.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"49 2","pages":"253 - 263"},"PeriodicalIF":0.3000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Products of Commutators of Involutions in Skew Linear Groups\",\"authors\":\"Nguyen Thi Thai Ha, Phan Hoang Nam, Tran Nam Son\",\"doi\":\"10.1007/s40306-024-00532-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In connection with [Theorem 4.6, Linear Algebra Appl. <b>646</b>, 119–131, (2022)], we show that each matrix in the commutator subgroup of the general linear group over a centrally-finite division ring <i>D</i>, in which each element in the commutator subgroup of <i>D</i> is a product of at most <i>s</i> commutators, can be written as a product of at most <span>\\\\(3+3\\\\left\\\\lceil \\\\frac{s}{\\\\lfloor n/2 \\\\rfloor } \\\\right\\\\rceil \\\\)</span> commutators of involutions if <span>\\\\(\\\\mathrm {char\\\\,}D\\\\ne 2\\\\)</span>, where <span>\\\\({\\\\displaystyle \\\\lceil x \\\\rceil }\\\\)</span>, <span>\\\\({\\\\displaystyle \\\\lfloor x \\\\rfloor }\\\\)</span> denote the ceiling and floor functions of <i>x</i>, respectively. Moreover, we also present the special case when <span>\\\\(D= \\\\mathbb {H}\\\\)</span>, the division ring of quaternions, and an application in real group algebras.</p></div>\",\"PeriodicalId\":45527,\"journal\":{\"name\":\"Acta Mathematica Vietnamica\",\"volume\":\"49 2\",\"pages\":\"253 - 263\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Vietnamica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40306-024-00532-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-024-00532-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
结合[定理 4.6,《线性代数应用》,646,119-131,(2022 年)],我们证明了在中心无限分割环 D 上的一般线性群的换元子群中的每个矩阵,其中换元子群中的每个元素都是在 D 上的。646, 119-131, (2022)],我们证明了在中心无限分割环 D 上的一般线性群换元子群中的每个矩阵,其中 D 的换元子群中的每个元素都是最多 s 个换元的乘积、可以写成至多是 \(3+3\left\lceil \frac{s}{\lfloor n/2 \rfloor } \right\rceil \) 换元的卷积的乘积,如果 \(\mathrm {char、}D\ne 2\), 其中 \({\displaystyle \lceil x \rceil }\), \({\displaystyle \lfloor x \rfloor }\) 分别表示 x 的上限函数和下限函数。此外,我们还介绍了四元数除环 \(D= \mathbb {H}\) 时的特殊情况,以及在实群代数中的应用。
Products of Commutators of Involutions in Skew Linear Groups
In connection with [Theorem 4.6, Linear Algebra Appl. 646, 119–131, (2022)], we show that each matrix in the commutator subgroup of the general linear group over a centrally-finite division ring D, in which each element in the commutator subgroup of D is a product of at most s commutators, can be written as a product of at most \(3+3\left\lceil \frac{s}{\lfloor n/2 \rfloor } \right\rceil \) commutators of involutions if \(\mathrm {char\,}D\ne 2\), where \({\displaystyle \lceil x \rceil }\), \({\displaystyle \lfloor x \rfloor }\) denote the ceiling and floor functions of x, respectively. Moreover, we also present the special case when \(D= \mathbb {H}\), the division ring of quaternions, and an application in real group algebras.
期刊介绍:
Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.