在算子代数中通过施密特秩和部分转置构建六阶复哈达玛矩阵

Yuming Chen
{"title":"在算子代数中通过施密特秩和部分转置构建六阶复哈达玛矩阵","authors":"Yuming Chen","doi":"10.54254/2753-8818/34/20241113","DOIUrl":null,"url":null,"abstract":"Hadamard matrices play a key role in the study of algebra and quantum information theory, and it is an open problem to characterize 6 6 Hadamard matrices. In this paper, we investigate the problem in terms of the Schmidt rank. The primary achievement of this paper lies in establishing a systematic approach to generate 6 6 Hadamard matrices and H-2 reducible matrices through partial transpose. First, if the Schmidt rank of a Hadamard matrix is at most three, then the partial transpose of the Hadamard matrix is also a Hadamard matrix. Conversely, if the Schmidt rank is four, then the partial transpose is no longer a Hadamard matrix. Second, we discuss the relationship between Schmidt rank and H-2 reducible matrices. We prove Hadamard matrices with Schmidt-rank-one are all H-2 reducible, and prove that some Schmidt-rank-two matrices are H-2 reducible. Finally, we confirm that the partial transpose of an H-2 reducible Schmidt-rank-one or two Hadamard matrix remains H-2 reducible.","PeriodicalId":489336,"journal":{"name":"Theoretical and Natural Science","volume":" 38","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Order-six complex hadamard matrices constructed by Schmidt rank and partial transpose in operator algebra\",\"authors\":\"Yuming Chen\",\"doi\":\"10.54254/2753-8818/34/20241113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hadamard matrices play a key role in the study of algebra and quantum information theory, and it is an open problem to characterize 6 6 Hadamard matrices. In this paper, we investigate the problem in terms of the Schmidt rank. The primary achievement of this paper lies in establishing a systematic approach to generate 6 6 Hadamard matrices and H-2 reducible matrices through partial transpose. First, if the Schmidt rank of a Hadamard matrix is at most three, then the partial transpose of the Hadamard matrix is also a Hadamard matrix. Conversely, if the Schmidt rank is four, then the partial transpose is no longer a Hadamard matrix. Second, we discuss the relationship between Schmidt rank and H-2 reducible matrices. We prove Hadamard matrices with Schmidt-rank-one are all H-2 reducible, and prove that some Schmidt-rank-two matrices are H-2 reducible. Finally, we confirm that the partial transpose of an H-2 reducible Schmidt-rank-one or two Hadamard matrix remains H-2 reducible.\",\"PeriodicalId\":489336,\"journal\":{\"name\":\"Theoretical and Natural Science\",\"volume\":\" 38\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Natural Science\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.54254/2753-8818/34/20241113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Natural Science","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.54254/2753-8818/34/20241113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

哈达玛矩阵在代数和量子信息论研究中起着关键作用,而如何描述 6 6 哈达玛矩阵是一个未决问题。在本文中,我们从施密特秩的角度来研究这个问题。本文的主要成就在于建立了一种通过部分转置生成 6 6 Hadamard 矩阵和 H-2 可简化矩阵的系统方法。首先,如果哈达玛矩阵的施密特秩最多为 3,那么哈达玛矩阵的部分转置也是哈达玛矩阵。反之,如果施密特秩为四,则部分转置不再是哈达玛矩阵。其次,我们讨论施密特秩和 H-2 可还原矩阵之间的关系。我们证明了施密特秩为一的哈达玛矩阵都是 H-2 可还原矩阵,并证明了一些施密特秩为二的矩阵是 H-2 可还原矩阵。最后,我们证实了 H-2 可还原的施密特秩为一或二的哈达玛矩阵的部分转置仍然是 H-2 可还原的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Order-six complex hadamard matrices constructed by Schmidt rank and partial transpose in operator algebra
Hadamard matrices play a key role in the study of algebra and quantum information theory, and it is an open problem to characterize 6 6 Hadamard matrices. In this paper, we investigate the problem in terms of the Schmidt rank. The primary achievement of this paper lies in establishing a systematic approach to generate 6 6 Hadamard matrices and H-2 reducible matrices through partial transpose. First, if the Schmidt rank of a Hadamard matrix is at most three, then the partial transpose of the Hadamard matrix is also a Hadamard matrix. Conversely, if the Schmidt rank is four, then the partial transpose is no longer a Hadamard matrix. Second, we discuss the relationship between Schmidt rank and H-2 reducible matrices. We prove Hadamard matrices with Schmidt-rank-one are all H-2 reducible, and prove that some Schmidt-rank-two matrices are H-2 reducible. Finally, we confirm that the partial transpose of an H-2 reducible Schmidt-rank-one or two Hadamard matrix remains H-2 reducible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信