和积查询的电路紧界

Austen Z. Fan, Paraschos Koutris, Hangdong Zhao
{"title":"和积查询的电路紧界","authors":"Austen Z. Fan, Paraschos Koutris, Hangdong Zhao","doi":"10.1145/3651588","DOIUrl":null,"url":null,"abstract":"In this paper, we ask the following question: given a Boolean Conjunctive Query (CQ), what is the smallest circuit that computes the provenance polynomial of the query over a given semiring? We answer this question by giving upper and lower bounds. Notably, it is shown that any circuit F that computes a CQ over the tropical semiring must have size log |F| ≥ (1-ε) · da-entw for any ε >0, where da-entw is the degree-aware entropic width of the query. We show a circuit construction that matches this bound when the semiring is idempotent. The techniques we use combine several central notions in database theory: provenance polynomials, tree decompositions, and disjunctive Datalog programs. We extend our results to lower and upper bounds for formulas (i.e., circuits where each gate has outdegree one), and to bounds for non-Boolean CQs.","PeriodicalId":498157,"journal":{"name":"Proceedings of the ACM on Management of Data","volume":" 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tight Bounds of Circuits for Sum-Product Queries\",\"authors\":\"Austen Z. Fan, Paraschos Koutris, Hangdong Zhao\",\"doi\":\"10.1145/3651588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we ask the following question: given a Boolean Conjunctive Query (CQ), what is the smallest circuit that computes the provenance polynomial of the query over a given semiring? We answer this question by giving upper and lower bounds. Notably, it is shown that any circuit F that computes a CQ over the tropical semiring must have size log |F| ≥ (1-ε) · da-entw for any ε >0, where da-entw is the degree-aware entropic width of the query. We show a circuit construction that matches this bound when the semiring is idempotent. The techniques we use combine several central notions in database theory: provenance polynomials, tree decompositions, and disjunctive Datalog programs. We extend our results to lower and upper bounds for formulas (i.e., circuits where each gate has outdegree one), and to bounds for non-Boolean CQs.\",\"PeriodicalId\":498157,\"journal\":{\"name\":\"Proceedings of the ACM on Management of Data\",\"volume\":\" 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Management of Data\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1145/3651588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Management of Data","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1145/3651588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了以下问题:给定一个布尔结语查询(CQ),在给定的语序上计算该查询的证明多项式的最小电路是什么?我们通过给出上限和下限来回答这个问题。值得注意的是,对于任意 ε >0 的情况,任何在热带配线上计算 CQ 的电路 F 的大小必须 log |F| ≥ (1-ε) - da-entw,其中 da-entw 是查询的度感知熵宽。我们展示了一种电路构造,当半线性是幂等的时候,它与这个约束相匹配。我们使用的技术结合了数据库理论中的几个核心概念:证明多项式、树分解和分条件 Datalog 程序。我们将结果扩展到公式的下界和上限(即每个门外度为 1 的电路),以及非布尔 CQ 的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight Bounds of Circuits for Sum-Product Queries
In this paper, we ask the following question: given a Boolean Conjunctive Query (CQ), what is the smallest circuit that computes the provenance polynomial of the query over a given semiring? We answer this question by giving upper and lower bounds. Notably, it is shown that any circuit F that computes a CQ over the tropical semiring must have size log |F| ≥ (1-ε) · da-entw for any ε >0, where da-entw is the degree-aware entropic width of the query. We show a circuit construction that matches this bound when the semiring is idempotent. The techniques we use combine several central notions in database theory: provenance polynomials, tree decompositions, and disjunctive Datalog programs. We extend our results to lower and upper bounds for formulas (i.e., circuits where each gate has outdegree one), and to bounds for non-Boolean CQs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信