用于查询处理的快速矩阵乘法

Xiao Hu
{"title":"用于查询处理的快速矩阵乘法","authors":"Xiao Hu","doi":"10.1145/3651599","DOIUrl":null,"url":null,"abstract":"This paper studies how to use fast matrix multiplication to speed up query processing. As observed, computing a two-table join and then projecting away the join attribute is essentially the Boolean matrix multiplication problem, which can be significantly improved with fast matrix multiplication. Moving beyond this basic two-table query, we introduce output-sensitive algorithms for general join-project queries using fast matrix multiplication. These algorithms have achieved a polynomially large improvement over the classic Yannakakis framework. To the best of our knowledge, this is the first theoretical improvement for general acyclic join-project queries since 1981.","PeriodicalId":498157,"journal":{"name":"Proceedings of the ACM on Management of Data","volume":" 45","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Matrix Multiplication for Query Processing\",\"authors\":\"Xiao Hu\",\"doi\":\"10.1145/3651599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies how to use fast matrix multiplication to speed up query processing. As observed, computing a two-table join and then projecting away the join attribute is essentially the Boolean matrix multiplication problem, which can be significantly improved with fast matrix multiplication. Moving beyond this basic two-table query, we introduce output-sensitive algorithms for general join-project queries using fast matrix multiplication. These algorithms have achieved a polynomially large improvement over the classic Yannakakis framework. To the best of our knowledge, this is the first theoretical improvement for general acyclic join-project queries since 1981.\",\"PeriodicalId\":498157,\"journal\":{\"name\":\"Proceedings of the ACM on Management of Data\",\"volume\":\" 45\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Management of Data\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1145/3651599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Management of Data","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1145/3651599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了如何利用快速矩阵乘法来加快查询处理速度。据观察,计算双表连接然后投影出连接属性本质上是布尔矩阵乘法问题,而快速矩阵乘法可以显著改善这一问题。除了这种基本的双表查询,我们还介绍了使用快速矩阵乘法进行一般连接-投影查询的输出敏感算法。与经典的 Yannakakis 框架相比,这些算法取得了多项式上的巨大进步。据我们所知,这是自 1981 年以来对一般无循环连接项目查询的首次理论改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Matrix Multiplication for Query Processing
This paper studies how to use fast matrix multiplication to speed up query processing. As observed, computing a two-table join and then projecting away the join attribute is essentially the Boolean matrix multiplication problem, which can be significantly improved with fast matrix multiplication. Moving beyond this basic two-table query, we introduce output-sensitive algorithms for general join-project queries using fast matrix multiplication. These algorithms have achieved a polynomially large improvement over the classic Yannakakis framework. To the best of our knowledge, this is the first theoretical improvement for general acyclic join-project queries since 1981.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信