由随机测量驱动的布尔格斯型方程

IF 0.4 Q4 STATISTICS & PROBABILITY
Vadym Radchenko
{"title":"由随机测量驱动的布尔格斯型方程","authors":"Vadym Radchenko","doi":"10.1090/tpms/1213","DOIUrl":null,"url":null,"abstract":"We study the one-dimensional equation driven by a stochastic measure \n\n \n μ\n \\mu\n \n\n. For \n\n \n μ\n \\mu\n \n\n we assume only \n\n \n σ\n \\sigma\n \n\n-additivity in probability. Our results imply the global existence and uniqueness of the solution to the heat equation and the local existence and uniqueness of the solution to the Burgers equation. The averaging principle for such equation is studied.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Burgers-type equation driven by a stochastic measure\",\"authors\":\"Vadym Radchenko\",\"doi\":\"10.1090/tpms/1213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the one-dimensional equation driven by a stochastic measure \\n\\n \\n μ\\n \\\\mu\\n \\n\\n. For \\n\\n \\n μ\\n \\\\mu\\n \\n\\n we assume only \\n\\n \\n σ\\n \\\\sigma\\n \\n\\n-additivity in probability. Our results imply the global existence and uniqueness of the solution to the heat equation and the local existence and uniqueness of the solution to the Burgers equation. The averaging principle for such equation is studied.\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tpms/1213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究由随机度量 μ \mu 驱动的一元方程。对于 μ \mu,我们只假设概率的 σ σ -加性。我们的结果意味着热方程解的全局存在性和唯一性,以及布尔格斯方程解的局部存在性和唯一性。研究了此类方程的平均原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Burgers-type equation driven by a stochastic measure
We study the one-dimensional equation driven by a stochastic measure μ \mu . For μ \mu we assume only σ \sigma -additivity in probability. Our results imply the global existence and uniqueness of the solution to the heat equation and the local existence and uniqueness of the solution to the Burgers equation. The averaging principle for such equation is studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信