{"title":"p-GaN 栅 AlGaN/GaN HEMT 在不同离态漏极电压和 ON 态漏极电流条件下进行双脉冲测试后的阈值电压不稳定性","authors":"Chih-wei Chen, Hao-Hsuan Lo, Y. Hsin","doi":"10.1149/2162-8777/ad49d6","DOIUrl":null,"url":null,"abstract":"\n This study investigated threshold voltage (VTH) instability in a Schottky p-GaN gate AlGaN/GaN high-electron-mobility transistor (HEMT) by using the double pulse test (DPT) with a 1-µs pulse width in the ON-state and OFF-state. OFF-state drain biases (VDS,OFF) of 100–400 V and ON-state drain currents of ID,ON 1–16 A were applied in the DPT to observe the post-DPT VTH shift. The ON-state currents did not strongly influence the device's characteristics after the DPT. However, the OFF-state voltages, particularly VDS,OFF = 100 and 200 V, exerted notable effects. A TCAD simulation was conducted to investigate the mechanism underlying the VTH shift after the DPT at various VDS,OFF and ID,ON levels.","PeriodicalId":504734,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Threshold Voltage Instability After Double Pulse Test Under Different OFF-State Drain Voltages and ON-State Drain Currents in p-GaN Gate AlGaN/GaN HEMT\",\"authors\":\"Chih-wei Chen, Hao-Hsuan Lo, Y. Hsin\",\"doi\":\"10.1149/2162-8777/ad49d6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study investigated threshold voltage (VTH) instability in a Schottky p-GaN gate AlGaN/GaN high-electron-mobility transistor (HEMT) by using the double pulse test (DPT) with a 1-µs pulse width in the ON-state and OFF-state. OFF-state drain biases (VDS,OFF) of 100–400 V and ON-state drain currents of ID,ON 1–16 A were applied in the DPT to observe the post-DPT VTH shift. The ON-state currents did not strongly influence the device's characteristics after the DPT. However, the OFF-state voltages, particularly VDS,OFF = 100 and 200 V, exerted notable effects. A TCAD simulation was conducted to investigate the mechanism underlying the VTH shift after the DPT at various VDS,OFF and ID,ON levels.\",\"PeriodicalId\":504734,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad49d6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad49d6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Threshold Voltage Instability After Double Pulse Test Under Different OFF-State Drain Voltages and ON-State Drain Currents in p-GaN Gate AlGaN/GaN HEMT
This study investigated threshold voltage (VTH) instability in a Schottky p-GaN gate AlGaN/GaN high-electron-mobility transistor (HEMT) by using the double pulse test (DPT) with a 1-µs pulse width in the ON-state and OFF-state. OFF-state drain biases (VDS,OFF) of 100–400 V and ON-state drain currents of ID,ON 1–16 A were applied in the DPT to observe the post-DPT VTH shift. The ON-state currents did not strongly influence the device's characteristics after the DPT. However, the OFF-state voltages, particularly VDS,OFF = 100 and 200 V, exerted notable effects. A TCAD simulation was conducted to investigate the mechanism underlying the VTH shift after the DPT at various VDS,OFF and ID,ON levels.