使用 EfficientNet 进行单张图像建筑高度估算:简化、可扩展的方法

Findings Pub Date : 2024-05-10 DOI:10.32866/001c.116609
Alexander W. Olson, Shoshanna Saxe
{"title":"使用 EfficientNet 进行单张图像建筑高度估算:简化、可扩展的方法","authors":"Alexander W. Olson, Shoshanna Saxe","doi":"10.32866/001c.116609","DOIUrl":null,"url":null,"abstract":"We present a novel approach for estimating building heights using single street-level images. The method employs EfficientNet, a state-of-the-art neural network, to eliminate the need for additional data like street maps. We compare this new method with existing techniques, focusing on accuracy evaluated through metrics like Mean Absolute Error (MAE). The model is pre-trained on the Cityscapes dataset and fine-tuned on images from Toronto’s 3D Massing dataset. It demonstrates strong accuracy, with an MAE of 1.21 meters, outperforming traditional methods.","PeriodicalId":508951,"journal":{"name":"Findings","volume":" 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Image Building Height Estimation Using EfficientNet: A Simplified, Scalable Approach\",\"authors\":\"Alexander W. Olson, Shoshanna Saxe\",\"doi\":\"10.32866/001c.116609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach for estimating building heights using single street-level images. The method employs EfficientNet, a state-of-the-art neural network, to eliminate the need for additional data like street maps. We compare this new method with existing techniques, focusing on accuracy evaluated through metrics like Mean Absolute Error (MAE). The model is pre-trained on the Cityscapes dataset and fine-tuned on images from Toronto’s 3D Massing dataset. It demonstrates strong accuracy, with an MAE of 1.21 meters, outperforming traditional methods.\",\"PeriodicalId\":508951,\"journal\":{\"name\":\"Findings\",\"volume\":\" 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Findings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32866/001c.116609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32866/001c.116609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种利用单张街道图像估算建筑物高度的新方法。该方法采用最先进的神经网络 EfficientNet,无需街道地图等额外数据。我们将这种新方法与现有技术进行了比较,重点是通过平均绝对误差 (MAE) 等指标来评估准确性。该模型在城市景观数据集上进行了预训练,并在多伦多 3D Massing 数据集的图像上进行了微调。该模型的准确性很高,MAE 为 1.21 米,优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-Image Building Height Estimation Using EfficientNet: A Simplified, Scalable Approach
We present a novel approach for estimating building heights using single street-level images. The method employs EfficientNet, a state-of-the-art neural network, to eliminate the need for additional data like street maps. We compare this new method with existing techniques, focusing on accuracy evaluated through metrics like Mean Absolute Error (MAE). The model is pre-trained on the Cityscapes dataset and fine-tuned on images from Toronto’s 3D Massing dataset. It demonstrates strong accuracy, with an MAE of 1.21 meters, outperforming traditional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信