{"title":"使用高阶建模技术分析完整/分层复合梁和夹层梁","authors":"Yuan Feng, Abdul H. Sheikh, Guanzhen Li","doi":"10.3390/jcs8050175","DOIUrl":null,"url":null,"abstract":"A simple higher-order model (HOM) is presented in this study for the bending analysis of an intact or delaminated composite and sandwich beam. This model adopts the concept of sub-laminates to simulate multilayered structures, and each sub-laminate takes cubic variation for axial displacement and linear variation for transverse displacement through the thickness. A sub-laminate possesses displacement components at its surfaces (bottom and top) that provide a straightforward way to improve the accuracy of prediction by stacking several sub-laminates. Thus, analysts will have the flexibility to balance the computational cost and the accuracy by selecting an appropriate sub-lamination scheme. The proposed model was implemented by developing a C0 beam element that has only displacement unknowns. The model was used to solve numerical examples of composite and sandwich beams to demonstrate its performance.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":" 28","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Intact/Delaminated Composite and Sandwich Beams Using a Higher-Order Modeling Technique\",\"authors\":\"Yuan Feng, Abdul H. Sheikh, Guanzhen Li\",\"doi\":\"10.3390/jcs8050175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple higher-order model (HOM) is presented in this study for the bending analysis of an intact or delaminated composite and sandwich beam. This model adopts the concept of sub-laminates to simulate multilayered structures, and each sub-laminate takes cubic variation for axial displacement and linear variation for transverse displacement through the thickness. A sub-laminate possesses displacement components at its surfaces (bottom and top) that provide a straightforward way to improve the accuracy of prediction by stacking several sub-laminates. Thus, analysts will have the flexibility to balance the computational cost and the accuracy by selecting an appropriate sub-lamination scheme. The proposed model was implemented by developing a C0 beam element that has only displacement unknowns. The model was used to solve numerical examples of composite and sandwich beams to demonstrate its performance.\",\"PeriodicalId\":502935,\"journal\":{\"name\":\"Journal of Composites Science\",\"volume\":\" 28\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jcs8050175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8050175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Intact/Delaminated Composite and Sandwich Beams Using a Higher-Order Modeling Technique
A simple higher-order model (HOM) is presented in this study for the bending analysis of an intact or delaminated composite and sandwich beam. This model adopts the concept of sub-laminates to simulate multilayered structures, and each sub-laminate takes cubic variation for axial displacement and linear variation for transverse displacement through the thickness. A sub-laminate possesses displacement components at its surfaces (bottom and top) that provide a straightforward way to improve the accuracy of prediction by stacking several sub-laminates. Thus, analysts will have the flexibility to balance the computational cost and the accuracy by selecting an appropriate sub-lamination scheme. The proposed model was implemented by developing a C0 beam element that has only displacement unknowns. The model was used to solve numerical examples of composite and sandwich beams to demonstrate its performance.