红藻化合物:神经退行性疾病的潜在神经保护剂

Leonel Pereira, A. Valado
{"title":"红藻化合物:神经退行性疾病的潜在神经保护剂","authors":"Leonel Pereira, A. Valado","doi":"10.21926/obm.neurobiol.2402223","DOIUrl":null,"url":null,"abstract":"This review explores the potential of compounds derived from red algae (Rhodophyta) as promising neuroprotective agents for treating neurodegenerative disorders. Red algae, abundant in marine environments, contain bioactive compounds with diverse chemical structures and functionalities. Sulfated polysaccharides, primarily agar and carrageenans, stand out as the predominant and widely utilized compounds derived from red algae. Additionally, red algae harbor a spectrum of potential molecules such as essential fatty acids, phycobiliproteins, vitamins, minerals, and secondary metabolites. Extensive research has highlighted the diverse biological activities exhibited by these compounds, including anti-oxidative and anti-inflammatory properties. These compounds show various biological activities that have garnered interest in their therapeutic potential for neurodegenerative diseases. This comprehensive review aims to summarize the current knowledge regarding the extraction, characterization, mechanisms of action, and therapeutic applications of Rhodophyta-derived compounds in the context of neuroprotection and treatment of neurodegenerative disorders.","PeriodicalId":74334,"journal":{"name":"OBM neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Red Algae Compounds: Potential Neuroprotective Agents for Neurodegenerative Disorders\",\"authors\":\"Leonel Pereira, A. Valado\",\"doi\":\"10.21926/obm.neurobiol.2402223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review explores the potential of compounds derived from red algae (Rhodophyta) as promising neuroprotective agents for treating neurodegenerative disorders. Red algae, abundant in marine environments, contain bioactive compounds with diverse chemical structures and functionalities. Sulfated polysaccharides, primarily agar and carrageenans, stand out as the predominant and widely utilized compounds derived from red algae. Additionally, red algae harbor a spectrum of potential molecules such as essential fatty acids, phycobiliproteins, vitamins, minerals, and secondary metabolites. Extensive research has highlighted the diverse biological activities exhibited by these compounds, including anti-oxidative and anti-inflammatory properties. These compounds show various biological activities that have garnered interest in their therapeutic potential for neurodegenerative diseases. This comprehensive review aims to summarize the current knowledge regarding the extraction, characterization, mechanisms of action, and therapeutic applications of Rhodophyta-derived compounds in the context of neuroprotection and treatment of neurodegenerative disorders.\",\"PeriodicalId\":74334,\"journal\":{\"name\":\"OBM neurobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OBM neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/obm.neurobiol.2402223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OBM neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/obm.neurobiol.2402223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇综述探讨了从红藻(Rhodophyta)中提取的化合物作为治疗神经退行性疾病的神经保护剂的潜力。红藻在海洋环境中含量丰富,含有具有不同化学结构和功能的生物活性化合物。硫酸化多糖,主要是琼脂和角叉菜胶,是从红藻中提取的最主要、最广泛的化合物。此外,红藻还蕴藏着一系列潜在的分子,如必需脂肪酸、藻胶蛋白、维生素、矿物质和次生代谢物。广泛的研究强调了这些化合物所表现出的多种生物活性,包括抗氧化和抗炎特性。这些化合物表现出的各种生物活性激发了人们对其治疗神经退行性疾病潜力的兴趣。本综述旨在总结有关红藻衍生化合物的提取、表征、作用机制以及在神经保护和治疗神经退行性疾病方面的治疗应用的现有知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Red Algae Compounds: Potential Neuroprotective Agents for Neurodegenerative Disorders
This review explores the potential of compounds derived from red algae (Rhodophyta) as promising neuroprotective agents for treating neurodegenerative disorders. Red algae, abundant in marine environments, contain bioactive compounds with diverse chemical structures and functionalities. Sulfated polysaccharides, primarily agar and carrageenans, stand out as the predominant and widely utilized compounds derived from red algae. Additionally, red algae harbor a spectrum of potential molecules such as essential fatty acids, phycobiliproteins, vitamins, minerals, and secondary metabolites. Extensive research has highlighted the diverse biological activities exhibited by these compounds, including anti-oxidative and anti-inflammatory properties. These compounds show various biological activities that have garnered interest in their therapeutic potential for neurodegenerative diseases. This comprehensive review aims to summarize the current knowledge regarding the extraction, characterization, mechanisms of action, and therapeutic applications of Rhodophyta-derived compounds in the context of neuroprotection and treatment of neurodegenerative disorders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信