{"title":"红藻化合物:神经退行性疾病的潜在神经保护剂","authors":"Leonel Pereira, A. Valado","doi":"10.21926/obm.neurobiol.2402223","DOIUrl":null,"url":null,"abstract":"This review explores the potential of compounds derived from red algae (Rhodophyta) as promising neuroprotective agents for treating neurodegenerative disorders. Red algae, abundant in marine environments, contain bioactive compounds with diverse chemical structures and functionalities. Sulfated polysaccharides, primarily agar and carrageenans, stand out as the predominant and widely utilized compounds derived from red algae. Additionally, red algae harbor a spectrum of potential molecules such as essential fatty acids, phycobiliproteins, vitamins, minerals, and secondary metabolites. Extensive research has highlighted the diverse biological activities exhibited by these compounds, including anti-oxidative and anti-inflammatory properties. These compounds show various biological activities that have garnered interest in their therapeutic potential for neurodegenerative diseases. This comprehensive review aims to summarize the current knowledge regarding the extraction, characterization, mechanisms of action, and therapeutic applications of Rhodophyta-derived compounds in the context of neuroprotection and treatment of neurodegenerative disorders.","PeriodicalId":74334,"journal":{"name":"OBM neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Red Algae Compounds: Potential Neuroprotective Agents for Neurodegenerative Disorders\",\"authors\":\"Leonel Pereira, A. Valado\",\"doi\":\"10.21926/obm.neurobiol.2402223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review explores the potential of compounds derived from red algae (Rhodophyta) as promising neuroprotective agents for treating neurodegenerative disorders. Red algae, abundant in marine environments, contain bioactive compounds with diverse chemical structures and functionalities. Sulfated polysaccharides, primarily agar and carrageenans, stand out as the predominant and widely utilized compounds derived from red algae. Additionally, red algae harbor a spectrum of potential molecules such as essential fatty acids, phycobiliproteins, vitamins, minerals, and secondary metabolites. Extensive research has highlighted the diverse biological activities exhibited by these compounds, including anti-oxidative and anti-inflammatory properties. These compounds show various biological activities that have garnered interest in their therapeutic potential for neurodegenerative diseases. This comprehensive review aims to summarize the current knowledge regarding the extraction, characterization, mechanisms of action, and therapeutic applications of Rhodophyta-derived compounds in the context of neuroprotection and treatment of neurodegenerative disorders.\",\"PeriodicalId\":74334,\"journal\":{\"name\":\"OBM neurobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OBM neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/obm.neurobiol.2402223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OBM neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/obm.neurobiol.2402223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Red Algae Compounds: Potential Neuroprotective Agents for Neurodegenerative Disorders
This review explores the potential of compounds derived from red algae (Rhodophyta) as promising neuroprotective agents for treating neurodegenerative disorders. Red algae, abundant in marine environments, contain bioactive compounds with diverse chemical structures and functionalities. Sulfated polysaccharides, primarily agar and carrageenans, stand out as the predominant and widely utilized compounds derived from red algae. Additionally, red algae harbor a spectrum of potential molecules such as essential fatty acids, phycobiliproteins, vitamins, minerals, and secondary metabolites. Extensive research has highlighted the diverse biological activities exhibited by these compounds, including anti-oxidative and anti-inflammatory properties. These compounds show various biological activities that have garnered interest in their therapeutic potential for neurodegenerative diseases. This comprehensive review aims to summarize the current knowledge regarding the extraction, characterization, mechanisms of action, and therapeutic applications of Rhodophyta-derived compounds in the context of neuroprotection and treatment of neurodegenerative disorders.