最小二乘估计器的特征:带有因果误差的多变量同调回归模型的错误定义

IF 0.4 Q4 STATISTICS & PROBABILITY
Pramita Bagchi, Subhra Dhar
{"title":"最小二乘估计器的特征:带有因果误差的多变量同调回归模型的错误定义","authors":"Pramita Bagchi, Subhra Dhar","doi":"10.1090/tpms/1210","DOIUrl":null,"url":null,"abstract":"This article investigates some nice properties of the least squares estimator of multivariate isotonic regression function (denoted as LSEMIR), when the model is mis-specified, and the errors are \n\n \n β\n \\beta\n \n\n-mixing stationary random variables. Under mild conditions, it is observed that the least squares estimator converges uniformly to a certain monotone function, which is closest to the original function in an appropriate sense.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the least squares estimator: Mis-specified multivariate isotonic regression model with dependent errors\",\"authors\":\"Pramita Bagchi, Subhra Dhar\",\"doi\":\"10.1090/tpms/1210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates some nice properties of the least squares estimator of multivariate isotonic regression function (denoted as LSEMIR), when the model is mis-specified, and the errors are \\n\\n \\n β\\n \\\\beta\\n \\n\\n-mixing stationary random variables. Under mild conditions, it is observed that the least squares estimator converges uniformly to a certain monotone function, which is closest to the original function in an appropriate sense.\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tpms/1210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了多元等调回归函数(记为 LSEMIR)的最小二乘估计器在模型被错误指定、误差为 β \beta 混合静态随机变量时的一些良好性质。在温和的条件下,可以观察到最小二乘估计器均匀地收敛于某个单调函数,在适当的意义上最接近原始函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of the least squares estimator: Mis-specified multivariate isotonic regression model with dependent errors
This article investigates some nice properties of the least squares estimator of multivariate isotonic regression function (denoted as LSEMIR), when the model is mis-specified, and the errors are β \beta -mixing stationary random variables. Under mild conditions, it is observed that the least squares estimator converges uniformly to a certain monotone function, which is closest to the original function in an appropriate sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信