基于单个低成本立方体目标的简单相机校准方法

Yuezhen Cai, Linyuan Xia, Ting On Chan
{"title":"基于单个低成本立方体目标的简单相机校准方法","authors":"Yuezhen Cai, Linyuan Xia, Ting On Chan","doi":"10.5194/isprs-archives-xlviii-1-2024-37-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Calibrating optical sensors with common targets facilitates the efficient and convenient acquisition of the sensor's internal parameters. In this paper, we present a new method of camera calibration utilizing a low-cost foamy cube, in a form of dice, which is based on the fact that arrangement of pip and cubical die surfaces is mutually orthogonal. Initially, each face and pips are identified through the color information on the die’s surfaces. Subsequently, the centers of pips are corrected using a circular projection model, and radial distortion coefficients are estimated based on centers’ one-to-one correspondences. After that, the tangent information between pairs of pips on orthogonal dice faces are utilized to compute vanishing points, leading to estimation of intrinsic parameters. Experimental results demonstrate that our method has similar effects compared to well-known checkerboard calibration method, reaching an average relative error of 2.43%, simplifying the calibration process in practical applications and showcasing good practicality and robustness.\n","PeriodicalId":505918,"journal":{"name":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":" 33","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Straightforward Camera Calibration Method Based on a Single Low-cost Cubical Target\",\"authors\":\"Yuezhen Cai, Linyuan Xia, Ting On Chan\",\"doi\":\"10.5194/isprs-archives-xlviii-1-2024-37-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Calibrating optical sensors with common targets facilitates the efficient and convenient acquisition of the sensor's internal parameters. In this paper, we present a new method of camera calibration utilizing a low-cost foamy cube, in a form of dice, which is based on the fact that arrangement of pip and cubical die surfaces is mutually orthogonal. Initially, each face and pips are identified through the color information on the die’s surfaces. Subsequently, the centers of pips are corrected using a circular projection model, and radial distortion coefficients are estimated based on centers’ one-to-one correspondences. After that, the tangent information between pairs of pips on orthogonal dice faces are utilized to compute vanishing points, leading to estimation of intrinsic parameters. Experimental results demonstrate that our method has similar effects compared to well-known checkerboard calibration method, reaching an average relative error of 2.43%, simplifying the calibration process in practical applications and showcasing good practicality and robustness.\\n\",\"PeriodicalId\":505918,\"journal\":{\"name\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\" 33\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-1-2024-37-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-1-2024-37-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要用普通目标校准光学传感器有助于高效、便捷地获取传感器的内部参数。本文提出了一种利用低成本泡沫立方体(骰子形状)进行相机校准的新方法,该方法基于点和立方体骰子表面的排列相互正交这一事实。首先,通过骰子表面的颜色信息识别每个面和点。然后,使用圆投影模型校正点的中心,并根据中心的一一对应关系估算径向变形系数。然后,利用正交骰面上点数对之间的切线信息计算消失点,从而估算出内在参数。实验结果表明,与著名的棋盘校准方法相比,我们的方法具有相似的效果,平均相对误差为 2.43%,简化了实际应用中的校准过程,具有良好的实用性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Straightforward Camera Calibration Method Based on a Single Low-cost Cubical Target
Abstract. Calibrating optical sensors with common targets facilitates the efficient and convenient acquisition of the sensor's internal parameters. In this paper, we present a new method of camera calibration utilizing a low-cost foamy cube, in a form of dice, which is based on the fact that arrangement of pip and cubical die surfaces is mutually orthogonal. Initially, each face and pips are identified through the color information on the die’s surfaces. Subsequently, the centers of pips are corrected using a circular projection model, and radial distortion coefficients are estimated based on centers’ one-to-one correspondences. After that, the tangent information between pairs of pips on orthogonal dice faces are utilized to compute vanishing points, leading to estimation of intrinsic parameters. Experimental results demonstrate that our method has similar effects compared to well-known checkerboard calibration method, reaching an average relative error of 2.43%, simplifying the calibration process in practical applications and showcasing good practicality and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信