{"title":"估算美国农业的生产率:针对未知价格时间序列数据的费雪全要素生产率指数","authors":"Thanh Ngo, David Tripe, Duc Khuong Nguyen","doi":"10.1111/1467-8489.12565","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a straightforward way to estimate the Fisher ideal total factor productivity (TFP) index (FI) in cases where price information is unavailable, using ‘shadow prices’ derived from data envelopment analysis (DEA). A Monte Carlo experiment shows that the shadow price Fisher ideal TFP index (SPFI) can effectively estimate the ‘true’ FI with relatively small (and stable) errors. The empirical application to the US agriculture sector (1948–2017) further suggests that the SPFI is a (superior) alternative to the traditional Malmquist DEA, especially in dealing with unbalanced panel or time series data when price data are unknown.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1467-8489.12565","citationCount":"0","resultStr":"{\"title\":\"Estimating the productivity of US agriculture: The Fisher total factor productivity index for time series data with unknown prices\",\"authors\":\"Thanh Ngo, David Tripe, Duc Khuong Nguyen\",\"doi\":\"10.1111/1467-8489.12565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose a straightforward way to estimate the Fisher ideal total factor productivity (TFP) index (FI) in cases where price information is unavailable, using ‘shadow prices’ derived from data envelopment analysis (DEA). A Monte Carlo experiment shows that the shadow price Fisher ideal TFP index (SPFI) can effectively estimate the ‘true’ FI with relatively small (and stable) errors. The empirical application to the US agriculture sector (1948–2017) further suggests that the SPFI is a (superior) alternative to the traditional Malmquist DEA, especially in dealing with unbalanced panel or time series data when price data are unknown.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1467-8489.12565\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1467-8489.12565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1467-8489.12565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们提出了一种在无法获得价格信息的情况下,利用数据包络分析(DEA)得出的 "影子价格 "估算费雪理想全要素生产率指数(FI)的直接方法。蒙特卡罗实验表明,影子价格费雪理想全要素生产率指数(SPFI)能有效估算 "真实 "全要素生产率指数,且误差相对较小(且稳定)。对美国农业部门(1948-2017 年)的实证应用进一步表明,SPFI 是传统 Malmquist DEA 的(更优)替代方案,尤其是在处理价格数据未知的非平衡面板数据或时间序列数据时。
Estimating the productivity of US agriculture: The Fisher total factor productivity index for time series data with unknown prices
In this paper, we propose a straightforward way to estimate the Fisher ideal total factor productivity (TFP) index (FI) in cases where price information is unavailable, using ‘shadow prices’ derived from data envelopment analysis (DEA). A Monte Carlo experiment shows that the shadow price Fisher ideal TFP index (SPFI) can effectively estimate the ‘true’ FI with relatively small (and stable) errors. The empirical application to the US agriculture sector (1948–2017) further suggests that the SPFI is a (superior) alternative to the traditional Malmquist DEA, especially in dealing with unbalanced panel or time series data when price data are unknown.