利用 TCN 和迁移学习通过 InSAR 时间序列分析揭示城市变形模式

Mengshi Yang, Saiwei Li, Hang Yu, Hao Wu, Menghua Li
{"title":"利用 TCN 和迁移学习通过 InSAR 时间序列分析揭示城市变形模式","authors":"Mengshi Yang, Saiwei Li, Hang Yu, Hao Wu, Menghua Li","doi":"10.5194/isprs-archives-xlviii-1-2024-813-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Current multi-epoch InSAR techniques heavily rely on the assumption of linear deformation. This can sometimes overlook crucial deformation signals when using velocities for evaluation. The process of interpreting InSAR time series is not only time-consuming and labor-intensive but also requires a certain level of expertise. This study refines existing InSAR deformation categories, such as stable, linear, step, piecewise linear, power, and undefined, to define 'canonical deformation time series patterns.' We propose an innovative approach for InSAR post-processing using Temporal Convolutional Networks (TCN) and transfer learning. Due to the limited availability of real data, we use simulated data to train a pre-existing model. We then assess the effectiveness of our method in identifying urban deformation patterns. This research could significantly improve our understanding of large-scale InSAR time series deformation and reveal the underlying patterns.\n","PeriodicalId":505918,"journal":{"name":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":" 410","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing Urban Deformation Patterns through InSAR Time Series Analysis with TCN and Transfer Learning\",\"authors\":\"Mengshi Yang, Saiwei Li, Hang Yu, Hao Wu, Menghua Li\",\"doi\":\"10.5194/isprs-archives-xlviii-1-2024-813-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Current multi-epoch InSAR techniques heavily rely on the assumption of linear deformation. This can sometimes overlook crucial deformation signals when using velocities for evaluation. The process of interpreting InSAR time series is not only time-consuming and labor-intensive but also requires a certain level of expertise. This study refines existing InSAR deformation categories, such as stable, linear, step, piecewise linear, power, and undefined, to define 'canonical deformation time series patterns.' We propose an innovative approach for InSAR post-processing using Temporal Convolutional Networks (TCN) and transfer learning. Due to the limited availability of real data, we use simulated data to train a pre-existing model. We then assess the effectiveness of our method in identifying urban deformation patterns. This research could significantly improve our understanding of large-scale InSAR time series deformation and reveal the underlying patterns.\\n\",\"PeriodicalId\":505918,\"journal\":{\"name\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\" 410\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-1-2024-813-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-1-2024-813-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要当前的多波长 InSAR 技术严重依赖于线性形变假设。在使用速度进行评估时,这有时会忽略关键的形变信号。解释 InSAR 时间序列的过程不仅耗时耗力,而且需要一定的专业知识。本研究完善了现有的 InSAR 变形类别,如稳定、线性、阶跃、片断线性、幂和未定义等,以定义 "典型变形时间序列模式"。我们提出了一种利用时序卷积网络(TCN)和迁移学习进行 InSAR 后处理的创新方法。由于真实数据有限,我们使用模拟数据来训练预先存在的模型。然后,我们评估了我们的方法在识别城市变形模式方面的有效性。这项研究将极大地提高我们对大规模 InSAR 时间序列形变的理解,并揭示其背后的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revealing Urban Deformation Patterns through InSAR Time Series Analysis with TCN and Transfer Learning
Abstract. Current multi-epoch InSAR techniques heavily rely on the assumption of linear deformation. This can sometimes overlook crucial deformation signals when using velocities for evaluation. The process of interpreting InSAR time series is not only time-consuming and labor-intensive but also requires a certain level of expertise. This study refines existing InSAR deformation categories, such as stable, linear, step, piecewise linear, power, and undefined, to define 'canonical deformation time series patterns.' We propose an innovative approach for InSAR post-processing using Temporal Convolutional Networks (TCN) and transfer learning. Due to the limited availability of real data, we use simulated data to train a pre-existing model. We then assess the effectiveness of our method in identifying urban deformation patterns. This research could significantly improve our understanding of large-scale InSAR time series deformation and reveal the underlying patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信