Lei Zhao, Zhizhi Liu, Sixing Wu, Wei Chen, Liwen Wu, Bin Pu, Shaowen Yao
{"title":"通过随机平均方差下降提高组合对抗攻击的可转移性","authors":"Lei Zhao, Zhizhi Liu, Sixing Wu, Wei Chen, Liwen Wu, Bin Pu, Shaowen Yao","doi":"10.1049/2024/7983842","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Adversarial examples have the property of transferring across models, which has created a great threat for deep learning models. To reveal the shortcomings in the existing deep learning models, the method of the ensemble has been introduced to the generating of transferable adversarial examples. However, most of the model ensemble attacks directly combine the different models’ output but ignore the large differences in optimization direction of them, which severely limits the transfer attack ability. In this work, we propose a new kind of ensemble attack method called stochastic average ensemble attack. Unlike the existing approach of averaging the outputs of each model as an integrated output, we continuously optimize the ensemble gradient in an internal loop using the model history gradient and the average gradient of different models. In this way, the adversarial examples can be updated in a more appropriate direction and make the crafted adversarial examples more transferable. Experimental results on ImageNet show that our method generates highly transferable adversarial examples and outperforms existing methods.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2024 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/7983842","citationCount":"0","resultStr":"{\"title\":\"Boosting the Transferability of Ensemble Adversarial Attack via Stochastic Average Variance Descent\",\"authors\":\"Lei Zhao, Zhizhi Liu, Sixing Wu, Wei Chen, Liwen Wu, Bin Pu, Shaowen Yao\",\"doi\":\"10.1049/2024/7983842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Adversarial examples have the property of transferring across models, which has created a great threat for deep learning models. To reveal the shortcomings in the existing deep learning models, the method of the ensemble has been introduced to the generating of transferable adversarial examples. However, most of the model ensemble attacks directly combine the different models’ output but ignore the large differences in optimization direction of them, which severely limits the transfer attack ability. In this work, we propose a new kind of ensemble attack method called stochastic average ensemble attack. Unlike the existing approach of averaging the outputs of each model as an integrated output, we continuously optimize the ensemble gradient in an internal loop using the model history gradient and the average gradient of different models. In this way, the adversarial examples can be updated in a more appropriate direction and make the crafted adversarial examples more transferable. Experimental results on ImageNet show that our method generates highly transferable adversarial examples and outperforms existing methods.</p>\\n </div>\",\"PeriodicalId\":50380,\"journal\":{\"name\":\"IET Information Security\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/7983842\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/7983842\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/7983842","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Boosting the Transferability of Ensemble Adversarial Attack via Stochastic Average Variance Descent
Adversarial examples have the property of transferring across models, which has created a great threat for deep learning models. To reveal the shortcomings in the existing deep learning models, the method of the ensemble has been introduced to the generating of transferable adversarial examples. However, most of the model ensemble attacks directly combine the different models’ output but ignore the large differences in optimization direction of them, which severely limits the transfer attack ability. In this work, we propose a new kind of ensemble attack method called stochastic average ensemble attack. Unlike the existing approach of averaging the outputs of each model as an integrated output, we continuously optimize the ensemble gradient in an internal loop using the model history gradient and the average gradient of different models. In this way, the adversarial examples can be updated in a more appropriate direction and make the crafted adversarial examples more transferable. Experimental results on ImageNet show that our method generates highly transferable adversarial examples and outperforms existing methods.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf