Talita Nogueira Terra, R. F. dos Santos, Rubens Augusto Camargo Lamparello
{"title":"基于田间土壤质地测量的土壤有机碳建模","authors":"Talita Nogueira Terra, R. F. dos Santos, Rubens Augusto Camargo Lamparello","doi":"10.24294/nrcr.v7i1.4913","DOIUrl":null,"url":null,"abstract":"There are many studies about soil organic carbon (SOC) around the world but, in extensive territories, it is more difficult to obtain data due to the number of variables involved in the models and their high cost. In large regions with poor infrastructure, low-cost SOC models are needed. With this in mind, our objective was to estimate the SOC using a simple model based on soil textural data. The work was focused on savanna soil and validated the model in the Brazilian Savanna. Two models were constructed, one for topsoil (0–0.3 m) and other for subsoil (0.3–1.0 m). The SOC models can be carried out in a textural triangle together with SOC values. The results showed that subsoil models were more accurate than topsoil models, but both had good performance. The models give support to SOC-related preliminary research in gross and fast estimates, requiring only reduced financial contribution to calculate SOC in a large region of interest.","PeriodicalId":113263,"journal":{"name":"Natural Resources Conservation and Research","volume":" 1266","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling soil organic carbon based on field soil-texture measurements\",\"authors\":\"Talita Nogueira Terra, R. F. dos Santos, Rubens Augusto Camargo Lamparello\",\"doi\":\"10.24294/nrcr.v7i1.4913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many studies about soil organic carbon (SOC) around the world but, in extensive territories, it is more difficult to obtain data due to the number of variables involved in the models and their high cost. In large regions with poor infrastructure, low-cost SOC models are needed. With this in mind, our objective was to estimate the SOC using a simple model based on soil textural data. The work was focused on savanna soil and validated the model in the Brazilian Savanna. Two models were constructed, one for topsoil (0–0.3 m) and other for subsoil (0.3–1.0 m). The SOC models can be carried out in a textural triangle together with SOC values. The results showed that subsoil models were more accurate than topsoil models, but both had good performance. The models give support to SOC-related preliminary research in gross and fast estimates, requiring only reduced financial contribution to calculate SOC in a large region of interest.\",\"PeriodicalId\":113263,\"journal\":{\"name\":\"Natural Resources Conservation and Research\",\"volume\":\" 1266\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resources Conservation and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24294/nrcr.v7i1.4913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Conservation and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24294/nrcr.v7i1.4913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling soil organic carbon based on field soil-texture measurements
There are many studies about soil organic carbon (SOC) around the world but, in extensive territories, it is more difficult to obtain data due to the number of variables involved in the models and their high cost. In large regions with poor infrastructure, low-cost SOC models are needed. With this in mind, our objective was to estimate the SOC using a simple model based on soil textural data. The work was focused on savanna soil and validated the model in the Brazilian Savanna. Two models were constructed, one for topsoil (0–0.3 m) and other for subsoil (0.3–1.0 m). The SOC models can be carried out in a textural triangle together with SOC values. The results showed that subsoil models were more accurate than topsoil models, but both had good performance. The models give support to SOC-related preliminary research in gross and fast estimates, requiring only reduced financial contribution to calculate SOC in a large region of interest.