通过对多台设备剩余使用寿命的概率预测进行动态分组维护优化

Xiangang Cao, Xinyu Shi, Jiangbin Zhao, Yong Duan, Xin Yang
{"title":"通过对多台设备剩余使用寿命的概率预测进行动态分组维护优化","authors":"Xiangang Cao, Xinyu Shi, Jiangbin Zhao, Yong Duan, Xin Yang","doi":"10.17531/ein/187793","DOIUrl":null,"url":null,"abstract":"For multi-equipment maintenance of modern production equipment, the economic correlation and degradation uncertainty may lead to insufficient or excessive maintenance, increasing maintenance costs. This paper proposes a dynamic grouping maintenance method based on probabilistic remaining useful life (RUL) prediction for multiple equipment. Long short term memory (LSTM) is developed to predict the equipment probability RUL by the Variational Auto-Encoder (VAE) resampling. Then, the dynamic grouping maintenance model is constructed to minimize the maintenance cost rate under the known probabilistic RUL information. The gazelle optimization algorithm (GOA) is used to determine the optimal maintenance time for each equipment. To better verify the effectiveness of the proposed method, a numerical case with six wind turbines is introduced to analyse the performance of GOA. Moreover, the advantages of dynamic grouping maintenance is verified by comparing with independent maintenance, whose maintenance cost rate is reduced by 10.01%.","PeriodicalId":335030,"journal":{"name":"Eksploatacja i Niezawodność – Maintenance and Reliability","volume":" 1070","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic grouping maintenance optimization by considering the probabilistic remaining useful life prediction of multiple equipment\",\"authors\":\"Xiangang Cao, Xinyu Shi, Jiangbin Zhao, Yong Duan, Xin Yang\",\"doi\":\"10.17531/ein/187793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For multi-equipment maintenance of modern production equipment, the economic correlation and degradation uncertainty may lead to insufficient or excessive maintenance, increasing maintenance costs. This paper proposes a dynamic grouping maintenance method based on probabilistic remaining useful life (RUL) prediction for multiple equipment. Long short term memory (LSTM) is developed to predict the equipment probability RUL by the Variational Auto-Encoder (VAE) resampling. Then, the dynamic grouping maintenance model is constructed to minimize the maintenance cost rate under the known probabilistic RUL information. The gazelle optimization algorithm (GOA) is used to determine the optimal maintenance time for each equipment. To better verify the effectiveness of the proposed method, a numerical case with six wind turbines is introduced to analyse the performance of GOA. Moreover, the advantages of dynamic grouping maintenance is verified by comparing with independent maintenance, whose maintenance cost rate is reduced by 10.01%.\",\"PeriodicalId\":335030,\"journal\":{\"name\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"volume\":\" 1070\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17531/ein/187793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja i Niezawodność – Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein/187793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于现代生产设备的多设备维护,经济相关性和退化的不确定性可能会导致维护不足或过度,增加维护成本。本文提出了一种基于概率剩余使用寿命(RUL)预测的多设备动态分组维护方法。通过变异自动编码器(VAE)重采样,开发了长短期记忆(LSTM)来预测设备概率 RUL。然后,构建动态分组维护模型,以便在已知概率 RUL 信息的条件下最大限度地降低维护成本率。瞪羚优化算法(GOA)用于确定每台设备的最佳维护时间。为了更好地验证所提方法的有效性,引入了一个包含六台风力涡轮机的数值案例来分析 GOA 的性能。此外,与独立维护相比,动态分组维护的优势得到了验证,其维护成本率降低了 10.01%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic grouping maintenance optimization by considering the probabilistic remaining useful life prediction of multiple equipment
For multi-equipment maintenance of modern production equipment, the economic correlation and degradation uncertainty may lead to insufficient or excessive maintenance, increasing maintenance costs. This paper proposes a dynamic grouping maintenance method based on probabilistic remaining useful life (RUL) prediction for multiple equipment. Long short term memory (LSTM) is developed to predict the equipment probability RUL by the Variational Auto-Encoder (VAE) resampling. Then, the dynamic grouping maintenance model is constructed to minimize the maintenance cost rate under the known probabilistic RUL information. The gazelle optimization algorithm (GOA) is used to determine the optimal maintenance time for each equipment. To better verify the effectiveness of the proposed method, a numerical case with six wind turbines is introduced to analyse the performance of GOA. Moreover, the advantages of dynamic grouping maintenance is verified by comparing with independent maintenance, whose maintenance cost rate is reduced by 10.01%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信