利用深度学习进行实时事故检测和救护车救援

Dr. P. U. Anitha, M. Akshay Kumar, T. Srinivas, M. Rakesh, M. Kalpana, K. Sushmitha
{"title":"利用深度学习进行实时事故检测和救护车救援","authors":"Dr. P. U. Anitha, M. Akshay Kumar, T. Srinivas, M. Rakesh, M. Kalpana, K. Sushmitha","doi":"10.48175/ijarsct-18188","DOIUrl":null,"url":null,"abstract":"Traffic accidents pose a significant threat to global safety. A comprehensive approach uses machine learning frameworks, deep learning techniques, and Python modules to reduce casualties and mitigate damage. The system uses Google API location services for precise geolocation tracking and improves accident prediction accuracy. It also enhances ambulance dispatching efficiency by dynamically assigning ambulances based on location and traffic patterns","PeriodicalId":510160,"journal":{"name":"International Journal of Advanced Research in Science, Communication and Technology","volume":"114 34","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real Time Accident Detection and Ambulance Rescue using Deep-Learning\",\"authors\":\"Dr. P. U. Anitha, M. Akshay Kumar, T. Srinivas, M. Rakesh, M. Kalpana, K. Sushmitha\",\"doi\":\"10.48175/ijarsct-18188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic accidents pose a significant threat to global safety. A comprehensive approach uses machine learning frameworks, deep learning techniques, and Python modules to reduce casualties and mitigate damage. The system uses Google API location services for precise geolocation tracking and improves accident prediction accuracy. It also enhances ambulance dispatching efficiency by dynamically assigning ambulances based on location and traffic patterns\",\"PeriodicalId\":510160,\"journal\":{\"name\":\"International Journal of Advanced Research in Science, Communication and Technology\",\"volume\":\"114 34\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Research in Science, Communication and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48175/ijarsct-18188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Science, Communication and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48175/ijarsct-18188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

交通事故对全球安全构成重大威胁。一种综合方法利用机器学习框架、深度学习技术和 Python 模块来减少伤亡和减轻损失。该系统利用谷歌 API 位置服务进行精确的地理位置跟踪,提高了事故预测的准确性。它还能根据位置和交通模式动态分配救护车,从而提高救护车调度效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real Time Accident Detection and Ambulance Rescue using Deep-Learning
Traffic accidents pose a significant threat to global safety. A comprehensive approach uses machine learning frameworks, deep learning techniques, and Python modules to reduce casualties and mitigate damage. The system uses Google API location services for precise geolocation tracking and improves accident prediction accuracy. It also enhances ambulance dispatching efficiency by dynamically assigning ambulances based on location and traffic patterns
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信