Tyoyima John Ayua, Moses Eterigho Emetere, Momodou Jain, Oladele Oyelakin
{"title":"量化西非一些城市气溶胶光学深度化学物质的能见度和对人类健康的影响","authors":"Tyoyima John Ayua, Moses Eterigho Emetere, Momodou Jain, Oladele Oyelakin","doi":"10.1007/s41810-024-00228-6","DOIUrl":null,"url":null,"abstract":"<div><p>The high level of chemical compounds in the atmosphere of many West African cities is worrying because of the potential threats to human health and other environmental problems they are known for. However, routine monitoring and adequate control measures are rare due to technical, social and economic problems. This paper analyzed the health and visibility effects of aerosol optical depth chemical species within some West African cities from (2010–2020) using the aerosol optical depth data set obtained from the European Center for Medium-Range Weather Forecasts (ECMWF-UK). The results of the analysis showed that the visual range of the study cities ranged from 4600 to 5600 km, while the potentials of human health effects T<sub>PHhe</sub> existing in the cities are between 0.9 and 1.2 signifying low visibility and high potential threats to human health. There exist several weak and also inverse correlations between the variability of the aerosol optical depth chemical species in the study cities with a coefficient of determination <span>\\({r}^{2}\\)</span> ranging from 0.01 to 0.98. This implies that aerosol loads are not uniformly distributed across cities and also come from a plethora of sources across cities. The variability of aerosol optical depth chemical species in the West African cities presented is useful in evaluating and improving the accuracy of the models for aerosol prediction in the region and can assist in the easy determination of aerosol effects in the atmosphere. The total chemical composition of aerosol loads was gauged with acceptable standards limit set by Environmental Protection Agencies to determine the health effects on humans and the results are useful not only in measuring the health implication but also in evaluating safety measures to tackle the effects, while the identified poor visibility in the cities is a clear call for policymakers to step up regulation and design action to tackle the menace of visibility reduction in these cities.</p></div>","PeriodicalId":36991,"journal":{"name":"Aerosol Science and Engineering","volume":"8 3","pages":"357 - 369"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the Visibility and Human Health Effects of Aerosol Optical Depth Chemical Species in Some Cities of West Africa\",\"authors\":\"Tyoyima John Ayua, Moses Eterigho Emetere, Momodou Jain, Oladele Oyelakin\",\"doi\":\"10.1007/s41810-024-00228-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The high level of chemical compounds in the atmosphere of many West African cities is worrying because of the potential threats to human health and other environmental problems they are known for. However, routine monitoring and adequate control measures are rare due to technical, social and economic problems. This paper analyzed the health and visibility effects of aerosol optical depth chemical species within some West African cities from (2010–2020) using the aerosol optical depth data set obtained from the European Center for Medium-Range Weather Forecasts (ECMWF-UK). The results of the analysis showed that the visual range of the study cities ranged from 4600 to 5600 km, while the potentials of human health effects T<sub>PHhe</sub> existing in the cities are between 0.9 and 1.2 signifying low visibility and high potential threats to human health. There exist several weak and also inverse correlations between the variability of the aerosol optical depth chemical species in the study cities with a coefficient of determination <span>\\\\({r}^{2}\\\\)</span> ranging from 0.01 to 0.98. This implies that aerosol loads are not uniformly distributed across cities and also come from a plethora of sources across cities. The variability of aerosol optical depth chemical species in the West African cities presented is useful in evaluating and improving the accuracy of the models for aerosol prediction in the region and can assist in the easy determination of aerosol effects in the atmosphere. The total chemical composition of aerosol loads was gauged with acceptable standards limit set by Environmental Protection Agencies to determine the health effects on humans and the results are useful not only in measuring the health implication but also in evaluating safety measures to tackle the effects, while the identified poor visibility in the cities is a clear call for policymakers to step up regulation and design action to tackle the menace of visibility reduction in these cities.</p></div>\",\"PeriodicalId\":36991,\"journal\":{\"name\":\"Aerosol Science and Engineering\",\"volume\":\"8 3\",\"pages\":\"357 - 369\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol Science and Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41810-024-00228-6\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s41810-024-00228-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Quantifying the Visibility and Human Health Effects of Aerosol Optical Depth Chemical Species in Some Cities of West Africa
The high level of chemical compounds in the atmosphere of many West African cities is worrying because of the potential threats to human health and other environmental problems they are known for. However, routine monitoring and adequate control measures are rare due to technical, social and economic problems. This paper analyzed the health and visibility effects of aerosol optical depth chemical species within some West African cities from (2010–2020) using the aerosol optical depth data set obtained from the European Center for Medium-Range Weather Forecasts (ECMWF-UK). The results of the analysis showed that the visual range of the study cities ranged from 4600 to 5600 km, while the potentials of human health effects TPHhe existing in the cities are between 0.9 and 1.2 signifying low visibility and high potential threats to human health. There exist several weak and also inverse correlations between the variability of the aerosol optical depth chemical species in the study cities with a coefficient of determination \({r}^{2}\) ranging from 0.01 to 0.98. This implies that aerosol loads are not uniformly distributed across cities and also come from a plethora of sources across cities. The variability of aerosol optical depth chemical species in the West African cities presented is useful in evaluating and improving the accuracy of the models for aerosol prediction in the region and can assist in the easy determination of aerosol effects in the atmosphere. The total chemical composition of aerosol loads was gauged with acceptable standards limit set by Environmental Protection Agencies to determine the health effects on humans and the results are useful not only in measuring the health implication but also in evaluating safety measures to tackle the effects, while the identified poor visibility in the cities is a clear call for policymakers to step up regulation and design action to tackle the menace of visibility reduction in these cities.
期刊介绍:
ASE is an international journal that publishes high-quality papers, communications, and discussion that advance aerosol science and engineering. Acceptable article forms include original research papers, review articles, letters, commentaries, news and views, research highlights, editorials, correspondence, and new-direction columns. ASE emphasizes the application of aerosol technology to both environmental and technical issues, and it provides a platform not only for basic research but also for industrial interests. We encourage scientists and researchers to submit papers that will advance our knowledge of aerosols and highlight new approaches for aerosol studies and new technologies for pollution control. ASE promotes cutting-edge studies of aerosol science and state-of-art instrumentation, but it is not limited to academic topics and instead aims to bridge the gap between basic science and industrial applications. ASE accepts papers covering a broad range of aerosol-related topics, including aerosol physical and chemical properties, composition, formation, transport and deposition, numerical simulation of air pollution incidents, chemical processes in the atmosphere, aerosol control technologies and industrial applications. In addition, ASE welcomes papers involving new and advanced methods and technologies that focus on aerosol pollution, sampling and analysis, including the invention and development of instrumentation, nanoparticle formation, nano technology, indoor and outdoor air quality monitoring, air pollution control, and air pollution remediation and feasibility assessments.