C. Reidsema, Hassan Khosravi, M. Fleming, L. Kavanagh, Nichoas Achilles, Esther Fink
{"title":"分析大型翻转工程学课程中学生的学习路径","authors":"C. Reidsema, Hassan Khosravi, M. Fleming, L. Kavanagh, Nichoas Achilles, Esther Fink","doi":"10.14742/apubs.2017.775","DOIUrl":null,"url":null,"abstract":"Recent advancements in educational technologies (learning management systems, online discussion forums, peer-learning tools) coupled with new methods of course delivery (e.g. blended, flipped, MOOCs) provide significant opportunities for universities to deliver challenging, high quality, yet engaging curriculum for students. In this paper, we examine the variations and similarities of student’s approaches to learning (learning pathways) by examining how well they performed in a large (N ~ 1000 student) first year engineering flipped classroom. The analysis focused on student’s performance in their assessment (formative and summative) as well as their online interaction with a range of tools purposely built to support students through peer learning and acquisition of resources and expertise. Analysis using k-means clustering reveals that students do in fact adopt a variety of successful pathways through the course. The unique aspects of this work lie in the use of analytics algorithms that whilst perhaps routinely utilised in data mining, are not as well utilised in better understanding patterns (successful or otherwise) of student interactions within a technology enhanced active learning environment that integrates theory with engineering practice.","PeriodicalId":475867,"journal":{"name":"ASCILITE Publications","volume":"118 42","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysing the learning pathways of students in a large flipped engineering course\",\"authors\":\"C. Reidsema, Hassan Khosravi, M. Fleming, L. Kavanagh, Nichoas Achilles, Esther Fink\",\"doi\":\"10.14742/apubs.2017.775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advancements in educational technologies (learning management systems, online discussion forums, peer-learning tools) coupled with new methods of course delivery (e.g. blended, flipped, MOOCs) provide significant opportunities for universities to deliver challenging, high quality, yet engaging curriculum for students. In this paper, we examine the variations and similarities of student’s approaches to learning (learning pathways) by examining how well they performed in a large (N ~ 1000 student) first year engineering flipped classroom. The analysis focused on student’s performance in their assessment (formative and summative) as well as their online interaction with a range of tools purposely built to support students through peer learning and acquisition of resources and expertise. Analysis using k-means clustering reveals that students do in fact adopt a variety of successful pathways through the course. The unique aspects of this work lie in the use of analytics algorithms that whilst perhaps routinely utilised in data mining, are not as well utilised in better understanding patterns (successful or otherwise) of student interactions within a technology enhanced active learning environment that integrates theory with engineering practice.\",\"PeriodicalId\":475867,\"journal\":{\"name\":\"ASCILITE Publications\",\"volume\":\"118 42\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASCILITE Publications\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.14742/apubs.2017.775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASCILITE Publications","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.14742/apubs.2017.775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysing the learning pathways of students in a large flipped engineering course
Recent advancements in educational technologies (learning management systems, online discussion forums, peer-learning tools) coupled with new methods of course delivery (e.g. blended, flipped, MOOCs) provide significant opportunities for universities to deliver challenging, high quality, yet engaging curriculum for students. In this paper, we examine the variations and similarities of student’s approaches to learning (learning pathways) by examining how well they performed in a large (N ~ 1000 student) first year engineering flipped classroom. The analysis focused on student’s performance in their assessment (formative and summative) as well as their online interaction with a range of tools purposely built to support students through peer learning and acquisition of resources and expertise. Analysis using k-means clustering reveals that students do in fact adopt a variety of successful pathways through the course. The unique aspects of this work lie in the use of analytics algorithms that whilst perhaps routinely utilised in data mining, are not as well utilised in better understanding patterns (successful or otherwise) of student interactions within a technology enhanced active learning environment that integrates theory with engineering practice.