IMPI:以慢性髓性白血病抗性突变为例的低频点突变识别界面

Julia Vetter, Jonathan Burghofer, Theodora Malli, Anna M. Lin, Gerald Webersinke, Markus Wiederstein, Stephan Winkler, Susanne Schaller
{"title":"IMPI:以慢性髓性白血病抗性突变为例的低频点突变识别界面","authors":"Julia Vetter, Jonathan Burghofer, Theodora Malli, Anna M. Lin, Gerald Webersinke, Markus Wiederstein, Stephan Winkler, Susanne Schaller","doi":"10.3390/biomedinformatics4020071","DOIUrl":null,"url":null,"abstract":"Background: In genomics, highly sensitive point mutation detection is particularly relevant for cancer diagnosis and early relapse detection. Next-generation sequencing combined with unique molecular identifiers (UMIs) is known to improve the mutation detection sensitivity. Methods: We present an open-source bioinformatics framework named Interface for Point Mutation Identification (IMPI) with a graphical user interface (GUI) for processing especially small-scale NGS data to identify variants. IMPI ensures detailed UMI analysis and clustering, as well as initial raw read processing, and consensus sequence building. Furthermore, the effects of custom algorithm and parameter settings for NGS data pre-processing and UMI collapsing (e.g., UMI clustered versus unclustered (raw) reads) can be investigated. Additionally, IMPI implements optimization and quality control methods; an evolution strategy is used for parameter optimization. Results: IMPI was designed, implemented, and tested using BCR::ABL1 fusion gene kinase domain sequencing data. In summary, IMPI enables a detailed analysis of the impact of UMI clustering and parameter setting changes on the measured allele frequencies. Conclusions: Regarding the BCR::ABL1 data, IMPI’s results underlined the need for caution while designing specialized single amplicon NGS approaches due to methodical limitations (e.g., high PCR-mediated recombination rate). This cannot be corrected using UMIs.","PeriodicalId":72394,"journal":{"name":"BioMedInformatics","volume":"33 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IMPI: An Interface for Low-Frequency Point Mutation Identification Exemplified on Resistance Mutations in Chronic Myeloid Leukemia\",\"authors\":\"Julia Vetter, Jonathan Burghofer, Theodora Malli, Anna M. Lin, Gerald Webersinke, Markus Wiederstein, Stephan Winkler, Susanne Schaller\",\"doi\":\"10.3390/biomedinformatics4020071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: In genomics, highly sensitive point mutation detection is particularly relevant for cancer diagnosis and early relapse detection. Next-generation sequencing combined with unique molecular identifiers (UMIs) is known to improve the mutation detection sensitivity. Methods: We present an open-source bioinformatics framework named Interface for Point Mutation Identification (IMPI) with a graphical user interface (GUI) for processing especially small-scale NGS data to identify variants. IMPI ensures detailed UMI analysis and clustering, as well as initial raw read processing, and consensus sequence building. Furthermore, the effects of custom algorithm and parameter settings for NGS data pre-processing and UMI collapsing (e.g., UMI clustered versus unclustered (raw) reads) can be investigated. Additionally, IMPI implements optimization and quality control methods; an evolution strategy is used for parameter optimization. Results: IMPI was designed, implemented, and tested using BCR::ABL1 fusion gene kinase domain sequencing data. In summary, IMPI enables a detailed analysis of the impact of UMI clustering and parameter setting changes on the measured allele frequencies. Conclusions: Regarding the BCR::ABL1 data, IMPI’s results underlined the need for caution while designing specialized single amplicon NGS approaches due to methodical limitations (e.g., high PCR-mediated recombination rate). This cannot be corrected using UMIs.\",\"PeriodicalId\":72394,\"journal\":{\"name\":\"BioMedInformatics\",\"volume\":\"33 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioMedInformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biomedinformatics4020071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedInformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomedinformatics4020071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:在基因组学中,高灵敏度的点突变检测对于癌症诊断和早期复发检测尤为重要。众所周知,下一代测序与独特分子标识符(UMI)相结合可提高突变检测灵敏度。方法:我们提出了一个名为 "点突变识别界面(IMPI)"的开源生物信息学框架,该框架具有图形用户界面(GUI),可用于处理特别小规模的 NGS 数据以识别变异。IMPI 可确保详细的 UMI 分析和聚类,以及初始原始读数处理和共识序列构建。此外,还可研究 NGS 数据预处理和 UMI 整理(如 UMI 聚类与非聚类(原始)读数)的自定义算法和参数设置的效果。此外,IMPI 还采用了优化和质量控制方法;参数优化采用了进化策略。结果利用 BCR::ABL1 融合基因激酶域测序数据设计、实施并测试了 IMPI。总之,IMPI 能够详细分析 UMI 聚类和参数设置变化对测出等位基因频率的影响。结论关于 BCR::ABL1 数据,IMPI 的结果强调,由于方法上的局限性(如 PCR 介导的高重组率),在设计专门的单扩增片段 NGS 方法时需要谨慎。使用 UMI 无法纠正这种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IMPI: An Interface for Low-Frequency Point Mutation Identification Exemplified on Resistance Mutations in Chronic Myeloid Leukemia
Background: In genomics, highly sensitive point mutation detection is particularly relevant for cancer diagnosis and early relapse detection. Next-generation sequencing combined with unique molecular identifiers (UMIs) is known to improve the mutation detection sensitivity. Methods: We present an open-source bioinformatics framework named Interface for Point Mutation Identification (IMPI) with a graphical user interface (GUI) for processing especially small-scale NGS data to identify variants. IMPI ensures detailed UMI analysis and clustering, as well as initial raw read processing, and consensus sequence building. Furthermore, the effects of custom algorithm and parameter settings for NGS data pre-processing and UMI collapsing (e.g., UMI clustered versus unclustered (raw) reads) can be investigated. Additionally, IMPI implements optimization and quality control methods; an evolution strategy is used for parameter optimization. Results: IMPI was designed, implemented, and tested using BCR::ABL1 fusion gene kinase domain sequencing data. In summary, IMPI enables a detailed analysis of the impact of UMI clustering and parameter setting changes on the measured allele frequencies. Conclusions: Regarding the BCR::ABL1 data, IMPI’s results underlined the need for caution while designing specialized single amplicon NGS approaches due to methodical limitations (e.g., high PCR-mediated recombination rate). This cannot be corrected using UMIs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信