有限导数与积分算子。穆勒-兹维巴赫之谜

Carlos Heredia Pimienta, Josep Llosa
{"title":"有限导数与积分算子。穆勒-兹维巴赫之谜","authors":"Carlos Heredia Pimienta, Josep Llosa","doi":"10.1088/1751-8121/ad4aa5","DOIUrl":null,"url":null,"abstract":"\n We study the relationship between integral and infinite-derivative operators. In particular, we examine the operator $p^{\\frac{1}{2}\\,\\partial_t^2}\\,$ that appears in the theory of $p$-adic string fields, as well as the Moyal product that arises in non-commutative theories. We also try to clarify the apparent paradox raised by Moeller and Zwiebach, which highlights the discrepancy between them.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"67 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinite derivatives vs integral operators. The Moeller-Zwiebach puzzle\",\"authors\":\"Carlos Heredia Pimienta, Josep Llosa\",\"doi\":\"10.1088/1751-8121/ad4aa5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We study the relationship between integral and infinite-derivative operators. In particular, we examine the operator $p^{\\\\frac{1}{2}\\\\,\\\\partial_t^2}\\\\,$ that appears in the theory of $p$-adic string fields, as well as the Moyal product that arises in non-commutative theories. We also try to clarify the apparent paradox raised by Moeller and Zwiebach, which highlights the discrepancy between them.\",\"PeriodicalId\":502730,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"67 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad4aa5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad4aa5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究积分算子和无限衍生算子之间的关系。特别是,我们研究了出现在$p$-adic弦场理论中的算子$p^{\frac{1}{2}\,\partial_t^2}\$,以及出现在非交换理论中的莫亚积。我们还试图澄清默勒和兹维巴赫提出的明显悖论,这凸显了他们之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinite derivatives vs integral operators. The Moeller-Zwiebach puzzle
We study the relationship between integral and infinite-derivative operators. In particular, we examine the operator $p^{\frac{1}{2}\,\partial_t^2}\,$ that appears in the theory of $p$-adic string fields, as well as the Moyal product that arises in non-commutative theories. We also try to clarify the apparent paradox raised by Moeller and Zwiebach, which highlights the discrepancy between them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信