送丝速度变化对线弧快速成型(WAAM)沉积物的影响

Q2 Engineering
Alizée Remy, U. Nwankpa, M. Rauch, J. Hascoët, G. Ruckert
{"title":"送丝速度变化对线弧快速成型(WAAM)沉积物的影响","authors":"Alizée Remy, U. Nwankpa, M. Rauch, J. Hascoët, G. Ruckert","doi":"10.36897/jme/188308","DOIUrl":null,"url":null,"abstract":"Metal Additive Manufacturing (MAM) is one of the innovative industrial technologies of the last decade, which presents some benefits as compared to traditional manufacturing techniques. MAM is faster, less expensive, and allow the manufacturing of large, complex components than casting, foundry etc. Understanding the influence of process parameters on the deposited matter and material characteristics is essential for the manufacturing of industrial parts. Current research concentrates on the impact of parameters on the fabricated structure geometry, microstructure and mechanical properties. There are limited number of studies, that focus on the possibility of Wire Feed Speed (WFS) parameter variation during deposition. In this work, a series of trials were realised with Cold Metal Transfer. The results showed that the quantity of material deposited was lesser than the theoretical value. The variation obtained was explained by the difference between the inputted WFS on the generator and the actual WFS output. Hence, the result on the influence of the variation of WFS on bead geometry was applied to a thermofluid model with Ti-6Al-4V alloy to confirm the sensitivity of this parameter in the quantity and geometry of the material deposited.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of a Variation in Wire Feed Speed on Deposits from the Wire Arc Additive Manufacturing (WAAM)\",\"authors\":\"Alizée Remy, U. Nwankpa, M. Rauch, J. Hascoët, G. Ruckert\",\"doi\":\"10.36897/jme/188308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal Additive Manufacturing (MAM) is one of the innovative industrial technologies of the last decade, which presents some benefits as compared to traditional manufacturing techniques. MAM is faster, less expensive, and allow the manufacturing of large, complex components than casting, foundry etc. Understanding the influence of process parameters on the deposited matter and material characteristics is essential for the manufacturing of industrial parts. Current research concentrates on the impact of parameters on the fabricated structure geometry, microstructure and mechanical properties. There are limited number of studies, that focus on the possibility of Wire Feed Speed (WFS) parameter variation during deposition. In this work, a series of trials were realised with Cold Metal Transfer. The results showed that the quantity of material deposited was lesser than the theoretical value. The variation obtained was explained by the difference between the inputted WFS on the generator and the actual WFS output. Hence, the result on the influence of the variation of WFS on bead geometry was applied to a thermofluid model with Ti-6Al-4V alloy to confirm the sensitivity of this parameter in the quantity and geometry of the material deposited.\",\"PeriodicalId\":37821,\"journal\":{\"name\":\"Journal of Machine Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36897/jme/188308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/188308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

金属添加剂制造(MAM)是近十年来的创新工业技术之一,与传统制造技术相比具有一些优势。与铸造、铸造等技术相比,金属快速成型技术速度更快、成本更低,而且可以制造大型复杂部件。了解工艺参数对沉积物和材料特性的影响对于制造工业部件至关重要。目前的研究主要集中在参数对制造结构的几何形状、微观结构和机械性能的影响。关注沉积过程中送线速度(WFS)参数变化可能性的研究数量有限。在这项工作中,使用冷金属转移技术进行了一系列试验。结果显示,沉积的材料数量少于理论值。输入到发生器上的 WFS 与实际 WFS 输出之间的差异可以解释这种变化。因此,将 WFS 变化对珠子几何形状影响的结果应用于 Ti-6Al-4V 合金的热流体模型,以确认该参数对沉积材料数量和几何形状的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of a Variation in Wire Feed Speed on Deposits from the Wire Arc Additive Manufacturing (WAAM)
Metal Additive Manufacturing (MAM) is one of the innovative industrial technologies of the last decade, which presents some benefits as compared to traditional manufacturing techniques. MAM is faster, less expensive, and allow the manufacturing of large, complex components than casting, foundry etc. Understanding the influence of process parameters on the deposited matter and material characteristics is essential for the manufacturing of industrial parts. Current research concentrates on the impact of parameters on the fabricated structure geometry, microstructure and mechanical properties. There are limited number of studies, that focus on the possibility of Wire Feed Speed (WFS) parameter variation during deposition. In this work, a series of trials were realised with Cold Metal Transfer. The results showed that the quantity of material deposited was lesser than the theoretical value. The variation obtained was explained by the difference between the inputted WFS on the generator and the actual WFS output. Hence, the result on the influence of the variation of WFS on bead geometry was applied to a thermofluid model with Ti-6Al-4V alloy to confirm the sensitivity of this parameter in the quantity and geometry of the material deposited.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Machine Engineering
Journal of Machine Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
2.70
自引率
0.00%
发文量
36
审稿时长
25 weeks
期刊介绍: ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信