针对基尔霍夫板障碍问题的 C0 不符合虚拟元素法

Axioms Pub Date : 2024-05-13 DOI:10.3390/axioms13050322
Bangmin Wu, Jiali Qiu
{"title":"针对基尔霍夫板障碍问题的 C0 不符合虚拟元素法","authors":"Bangmin Wu, Jiali Qiu","doi":"10.3390/axioms13050322","DOIUrl":null,"url":null,"abstract":"This paper investigates a novel C0 nonconforming virtual element method (VEM) for solving the Kirchhoff plate obstacle problem, which is described by a fourth-order variational inequality (VI) of the first kind. In our study, we distinguish our approach by introducing new internal degrees of freedom to the traditional lowest-order C0 nonconforming VEM, which originally lacked such degrees. This addition not only facilitates error estimation but also enhances its intuitiveness. Importantly, our novel C0 nonconforming VEM naturally satisfies the constraints of the obstacle problem. We then establish an a priori error estimate for our novel C0 nonconforming VEM, with the result indicating that the lowest order of our method achieves optimal convergence. Finally, we present a numerical example to validate the theoretical result.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"22 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A C0 Nonconforming Virtual Element Method for the Kirchhoff Plate Obstacle Problem\",\"authors\":\"Bangmin Wu, Jiali Qiu\",\"doi\":\"10.3390/axioms13050322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates a novel C0 nonconforming virtual element method (VEM) for solving the Kirchhoff plate obstacle problem, which is described by a fourth-order variational inequality (VI) of the first kind. In our study, we distinguish our approach by introducing new internal degrees of freedom to the traditional lowest-order C0 nonconforming VEM, which originally lacked such degrees. This addition not only facilitates error estimation but also enhances its intuitiveness. Importantly, our novel C0 nonconforming VEM naturally satisfies the constraints of the obstacle problem. We then establish an a priori error estimate for our novel C0 nonconforming VEM, with the result indicating that the lowest order of our method achieves optimal convergence. Finally, we present a numerical example to validate the theoretical result.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\"22 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13050322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13050322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种新颖的 C0 非符合虚拟元素法(VEM),用于求解基尔霍夫板障碍问题,该问题由四阶第一类变分不等式(VI)描述。在我们的研究中,我们在传统的最低阶 C0 非符合虚拟元素法中引入了新的内部自由度,从而使我们的方法与众不同。这一添加不仅有助于误差估计,还增强了其直观性。重要的是,我们的新型 C0 非顺应 VEM 自然满足障碍问题的约束条件。然后,我们建立了新颖的 C0 非顺应 VEM 的先验误差估计,结果表明我们方法的最低阶数实现了最佳收敛。最后,我们给出了一个数值示例来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A C0 Nonconforming Virtual Element Method for the Kirchhoff Plate Obstacle Problem
This paper investigates a novel C0 nonconforming virtual element method (VEM) for solving the Kirchhoff plate obstacle problem, which is described by a fourth-order variational inequality (VI) of the first kind. In our study, we distinguish our approach by introducing new internal degrees of freedom to the traditional lowest-order C0 nonconforming VEM, which originally lacked such degrees. This addition not only facilitates error estimation but also enhances its intuitiveness. Importantly, our novel C0 nonconforming VEM naturally satisfies the constraints of the obstacle problem. We then establish an a priori error estimate for our novel C0 nonconforming VEM, with the result indicating that the lowest order of our method achieves optimal convergence. Finally, we present a numerical example to validate the theoretical result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信