多复数的矢量表示法及其在射频信号中的应用

Axioms Pub Date : 2024-05-14 DOI:10.3390/axioms13050324
D. Borio
{"title":"多复数的矢量表示法及其在射频信号中的应用","authors":"D. Borio","doi":"10.3390/axioms13050324","DOIUrl":null,"url":null,"abstract":"Hypercomplex numbers, which are multi-dimensional extensions of complex numbers, have been proven beneficial in the development of advanced signal processing algorithms, including multi-dimensional filter design, linear regression and classification. We focus on multicomplex numbers, sets of hypercomplex numbers with commutative products, and introduce a vector representation allowing one to isolate the hyperbolic real and imaginary parts of a multicomplex number. The orthogonal decomposition of a multicomplex number is also discussed, and its connection with Hadamard matrices is highlighted. Finally, a multicomplex polar representation is provided. These properties are used to extend the standard complex baseband signal representation to the multi-dimensional case. It is shown that a set of 2n Radio Frequency (RF) signals can be represented as the real part of a single multicomplex signal modulated by several frequencies. The signal RFs are related through a Hadamard matrix to the modulating frequencies adopted in the multicomplex baseband representation. Moreover, an orthogonal decomposition is provided for the obtained multicomplex baseband signal as a function of the complex baseband representations of the input RF signals.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"37 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Vector Representation of Multicomplex Numbers and Its Application to Radio Frequency Signals\",\"authors\":\"D. Borio\",\"doi\":\"10.3390/axioms13050324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hypercomplex numbers, which are multi-dimensional extensions of complex numbers, have been proven beneficial in the development of advanced signal processing algorithms, including multi-dimensional filter design, linear regression and classification. We focus on multicomplex numbers, sets of hypercomplex numbers with commutative products, and introduce a vector representation allowing one to isolate the hyperbolic real and imaginary parts of a multicomplex number. The orthogonal decomposition of a multicomplex number is also discussed, and its connection with Hadamard matrices is highlighted. Finally, a multicomplex polar representation is provided. These properties are used to extend the standard complex baseband signal representation to the multi-dimensional case. It is shown that a set of 2n Radio Frequency (RF) signals can be represented as the real part of a single multicomplex signal modulated by several frequencies. The signal RFs are related through a Hadamard matrix to the modulating frequencies adopted in the multicomplex baseband representation. Moreover, an orthogonal decomposition is provided for the obtained multicomplex baseband signal as a function of the complex baseband representations of the input RF signals.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\"37 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13050324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13050324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超复数是复数的多维扩展,已被证明有利于开发先进的信号处理算法,包括多维滤波器设计、线性回归和分类。我们将重点放在多复数(具有交换积的多复数集合)上,并介绍了一种向量表示法,允许人们分离多复数的双曲实部和虚部。此外,还讨论了多复数的正交分解,并强调了它与哈达玛矩阵的联系。最后,还提供了多复数极性表示。这些特性被用来将标准复数基带信号表示法扩展到多维情况。研究表明,一组 2n 射频(RF)信号可以表示为由多个频率调制的单一多复数信号的实部。射频信号通过哈达玛矩阵与多复基带表示中采用的调制频率相关。此外,作为输入射频信号的复数基带表示的函数,还为获得的多复数基带信号提供了正交分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Vector Representation of Multicomplex Numbers and Its Application to Radio Frequency Signals
Hypercomplex numbers, which are multi-dimensional extensions of complex numbers, have been proven beneficial in the development of advanced signal processing algorithms, including multi-dimensional filter design, linear regression and classification. We focus on multicomplex numbers, sets of hypercomplex numbers with commutative products, and introduce a vector representation allowing one to isolate the hyperbolic real and imaginary parts of a multicomplex number. The orthogonal decomposition of a multicomplex number is also discussed, and its connection with Hadamard matrices is highlighted. Finally, a multicomplex polar representation is provided. These properties are used to extend the standard complex baseband signal representation to the multi-dimensional case. It is shown that a set of 2n Radio Frequency (RF) signals can be represented as the real part of a single multicomplex signal modulated by several frequencies. The signal RFs are related through a Hadamard matrix to the modulating frequencies adopted in the multicomplex baseband representation. Moreover, an orthogonal decomposition is provided for the obtained multicomplex baseband signal as a function of the complex baseband representations of the input RF signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信