用有限差分法求解水中的时分阶 Radon 扩散方程

Vijaymala Ghuge, T. L. Holambe, Bhausaheb Sontakke, G. Shrimangale
{"title":"用有限差分法求解水中的时分阶 Radon 扩散方程","authors":"Vijaymala Ghuge, T. L. Holambe, Bhausaheb Sontakke, G. Shrimangale","doi":"10.17485/ijst/v17i19.868","DOIUrl":null,"url":null,"abstract":"Objective: The aim of this research is to gain a comprehensive understanding of radon diffusion equation in water. Methods: A time fractional radon diffusion equation with Caputo sense is employed to find diffusion dynamics of radon in water medium. The fractional order explicit finite difference technique is used to find its numerical solution. A Python software is used to find numerical solution. Findings: The effect of fractional-order parameters on the distribution and concentration profiles of radon in water has been investigated. Furthermore, we study stability and convergence of the explicit finite difference method. Novelty: The fractional order explicit finite difference method can be used to estimate approximate solution of such fractional order differential equations. Keywords: Radon Diffusion Equation, Finite Difference Method, Caputo, Fractional Derivative, Python","PeriodicalId":13296,"journal":{"name":"Indian journal of science and technology","volume":"47 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving Time-fractional Order Radon Diffusion Equation in Water by Finite Difference Method\",\"authors\":\"Vijaymala Ghuge, T. L. Holambe, Bhausaheb Sontakke, G. Shrimangale\",\"doi\":\"10.17485/ijst/v17i19.868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: The aim of this research is to gain a comprehensive understanding of radon diffusion equation in water. Methods: A time fractional radon diffusion equation with Caputo sense is employed to find diffusion dynamics of radon in water medium. The fractional order explicit finite difference technique is used to find its numerical solution. A Python software is used to find numerical solution. Findings: The effect of fractional-order parameters on the distribution and concentration profiles of radon in water has been investigated. Furthermore, we study stability and convergence of the explicit finite difference method. Novelty: The fractional order explicit finite difference method can be used to estimate approximate solution of such fractional order differential equations. Keywords: Radon Diffusion Equation, Finite Difference Method, Caputo, Fractional Derivative, Python\",\"PeriodicalId\":13296,\"journal\":{\"name\":\"Indian journal of science and technology\",\"volume\":\"47 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian journal of science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17485/ijst/v17i19.868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17485/ijst/v17i19.868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究目的本研究旨在全面了解氡在水中的扩散方程。研究方法:采用具有 Caputo 意义的时间分式氡扩散方程来研究氡在水介质中的扩散动力学。采用分数阶显式有限差分技术求数值解。使用 Python 软件求数值解。研究结果研究了分数阶参数对水中氡的分布和浓度曲线的影响。此外,我们还研究了显式有限差分法的稳定性和收敛性。新颖性: 分数阶显式有限差分法可用于估计此类分数阶微分方程的近似解。关键词Radon 扩散方程、有限差分法、Caputo、分数微分、Python
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving Time-fractional Order Radon Diffusion Equation in Water by Finite Difference Method
Objective: The aim of this research is to gain a comprehensive understanding of radon diffusion equation in water. Methods: A time fractional radon diffusion equation with Caputo sense is employed to find diffusion dynamics of radon in water medium. The fractional order explicit finite difference technique is used to find its numerical solution. A Python software is used to find numerical solution. Findings: The effect of fractional-order parameters on the distribution and concentration profiles of radon in water has been investigated. Furthermore, we study stability and convergence of the explicit finite difference method. Novelty: The fractional order explicit finite difference method can be used to estimate approximate solution of such fractional order differential equations. Keywords: Radon Diffusion Equation, Finite Difference Method, Caputo, Fractional Derivative, Python
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信