Sanaa Fadil, Imane Sebari, Moulay Mohamed Ajerame, Rayhana Ajeddour, Ibtihal El Maghraoui, Kenza Ait El kadi, Yahya Zefri, Mouad Jabrane
{"title":"利用无人飞行器激光雷达(LiDAR UAV)数据、大地遥感卫星图像和马莫拉地中海软木橡树林森林调查数据进行生物量和碳储量空间化与动态评估的综合框架","authors":"Sanaa Fadil, Imane Sebari, Moulay Mohamed Ajerame, Rayhana Ajeddour, Ibtihal El Maghraoui, Kenza Ait El kadi, Yahya Zefri, Mouad Jabrane","doi":"10.3390/land13050688","DOIUrl":null,"url":null,"abstract":"Spatialization of biomass and carbon stocks is essential for a good understanding of the forest stand and its characteristics, especially in degraded Mediterranean cork oak forests. Furthermore, the analysis of biomass and carbon stock changes and dynamics is essential for understanding the carbon cycle, in particular carbon emissions and stocks, in order to make projections, especially in the context of climate change. In this research, we use a multidimensional framework integrating forest survey data, LiDAR UAV data, and extracted vegetation indices from Landsat imagery (NDVI, ARVI, CIG, etc.) to model and spatialize cork oak biomass and carbon stocks on a large scale. For this purpose, we explore the use of univariate and multivariate regression modeling and examine several types of regression, namely, multiple linear regression, stepwise linear regression, random forest regression, simple linear regression, logarithmic regression, and quadratic and cubic regression. The results show that for multivariate regression, stepwise regression gives good results, with R2 equal to 80% and 65% and RMSE equal to 2.59 and 1.52 Mg/ha for biomass and carbon stock, respectively. Random forest regression, chosen as the ML algorithm, gives acceptable results, explaining 80% and 60% of the variation in biomass and carbon stock, respectively, and an RMSE of 2.74 and 1.72 Mg/ha for biomass and carbon stock, respectively. For the univariate regression, the simple linear regression is chosen because it gives satisfactory results, close to those of the quadratic and cubic regressions, but with a simpler equation. The vegetation index chosen is ARVI, which shows good performance indices, close to those of the NDVI and CIG. The assessment of biomass and carbon stock changes in the study area over 35 years (1985–2020) showed a slight increase of less than 10 Mg/ha and a decrease in biomass and carbon stock over a large area.","PeriodicalId":37702,"journal":{"name":"Land","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Integrating Framework for Biomass and Carbon Stock Spatialization and Dynamics Assessment Using Unmanned Aerial Vehicle LiDAR (LiDAR UAV) Data, Landsat Imagery, and Forest Survey Data in the Mediterranean Cork Oak Forest of Maamora\",\"authors\":\"Sanaa Fadil, Imane Sebari, Moulay Mohamed Ajerame, Rayhana Ajeddour, Ibtihal El Maghraoui, Kenza Ait El kadi, Yahya Zefri, Mouad Jabrane\",\"doi\":\"10.3390/land13050688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatialization of biomass and carbon stocks is essential for a good understanding of the forest stand and its characteristics, especially in degraded Mediterranean cork oak forests. Furthermore, the analysis of biomass and carbon stock changes and dynamics is essential for understanding the carbon cycle, in particular carbon emissions and stocks, in order to make projections, especially in the context of climate change. In this research, we use a multidimensional framework integrating forest survey data, LiDAR UAV data, and extracted vegetation indices from Landsat imagery (NDVI, ARVI, CIG, etc.) to model and spatialize cork oak biomass and carbon stocks on a large scale. For this purpose, we explore the use of univariate and multivariate regression modeling and examine several types of regression, namely, multiple linear regression, stepwise linear regression, random forest regression, simple linear regression, logarithmic regression, and quadratic and cubic regression. The results show that for multivariate regression, stepwise regression gives good results, with R2 equal to 80% and 65% and RMSE equal to 2.59 and 1.52 Mg/ha for biomass and carbon stock, respectively. Random forest regression, chosen as the ML algorithm, gives acceptable results, explaining 80% and 60% of the variation in biomass and carbon stock, respectively, and an RMSE of 2.74 and 1.72 Mg/ha for biomass and carbon stock, respectively. For the univariate regression, the simple linear regression is chosen because it gives satisfactory results, close to those of the quadratic and cubic regressions, but with a simpler equation. The vegetation index chosen is ARVI, which shows good performance indices, close to those of the NDVI and CIG. The assessment of biomass and carbon stock changes in the study area over 35 years (1985–2020) showed a slight increase of less than 10 Mg/ha and a decrease in biomass and carbon stock over a large area.\",\"PeriodicalId\":37702,\"journal\":{\"name\":\"Land\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Land\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/land13050688\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/land13050688","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
An Integrating Framework for Biomass and Carbon Stock Spatialization and Dynamics Assessment Using Unmanned Aerial Vehicle LiDAR (LiDAR UAV) Data, Landsat Imagery, and Forest Survey Data in the Mediterranean Cork Oak Forest of Maamora
Spatialization of biomass and carbon stocks is essential for a good understanding of the forest stand and its characteristics, especially in degraded Mediterranean cork oak forests. Furthermore, the analysis of biomass and carbon stock changes and dynamics is essential for understanding the carbon cycle, in particular carbon emissions and stocks, in order to make projections, especially in the context of climate change. In this research, we use a multidimensional framework integrating forest survey data, LiDAR UAV data, and extracted vegetation indices from Landsat imagery (NDVI, ARVI, CIG, etc.) to model and spatialize cork oak biomass and carbon stocks on a large scale. For this purpose, we explore the use of univariate and multivariate regression modeling and examine several types of regression, namely, multiple linear regression, stepwise linear regression, random forest regression, simple linear regression, logarithmic regression, and quadratic and cubic regression. The results show that for multivariate regression, stepwise regression gives good results, with R2 equal to 80% and 65% and RMSE equal to 2.59 and 1.52 Mg/ha for biomass and carbon stock, respectively. Random forest regression, chosen as the ML algorithm, gives acceptable results, explaining 80% and 60% of the variation in biomass and carbon stock, respectively, and an RMSE of 2.74 and 1.72 Mg/ha for biomass and carbon stock, respectively. For the univariate regression, the simple linear regression is chosen because it gives satisfactory results, close to those of the quadratic and cubic regressions, but with a simpler equation. The vegetation index chosen is ARVI, which shows good performance indices, close to those of the NDVI and CIG. The assessment of biomass and carbon stock changes in the study area over 35 years (1985–2020) showed a slight increase of less than 10 Mg/ha and a decrease in biomass and carbon stock over a large area.
LandENVIRONMENTAL STUDIES-Nature and Landscape Conservation
CiteScore
4.90
自引率
23.10%
发文量
1927
期刊介绍:
Land is an international and cross-disciplinary, peer-reviewed, open access journal of land system science, landscape, soil–sediment–water systems, urban study, land–climate interactions, water–energy–land–food (WELF) nexus, biodiversity research and health nexus, land modelling and data processing, ecosystem services, and multifunctionality and sustainability etc., published monthly online by MDPI. The International Association for Landscape Ecology (IALE), European Land-use Institute (ELI), and Landscape Institute (LI) are affiliated with Land, and their members receive a discount on the article processing charge.