利用 PSO 和在线控制参数校准实现高实用率项集提取

IF 0.3
L. K., SURESH S, SAVITHA S, ANANDAMURUGAN S
{"title":"利用 PSO 和在线控制参数校准实现高实用率项集提取","authors":"L. K., SURESH S, SAVITHA S, ANANDAMURUGAN S","doi":"10.47164/ijngc.v15i1.1643","DOIUrl":null,"url":null,"abstract":"This study investigates the use of evolutionary computation for mining high-value patterns from benchmark datasets. The approach employs a fitness function to assess the usefulness of each pattern. However, the effectiveness of evolutionary algorithms heavily relies on the chosen strategy parameters during execution. Conventional methods set these parameters arbitrarily, often leading to suboptimal solutions. To address this limitation, the research proposes a method for dynamically adjusting strategy parameters using temporal difference approaches, a machine learning technique called Reinforcement Learning (RL). Specifically, the proposed IPSO RLON algorithm utilizes SARSA learning to intelligently adapt the Crossover Rate and Mutation Rate within the Practical Swarm Optimization Algorithm. This allows IPSO RLON to effectively mine high-utility itemsets from the data.The key benefit of IPSO RLON lies in its adaptive control parameters. This enables it to discover optimal high-utility itemsets when applied to various benchmark datasets. To assess its performance, IPSO RLON is compared to existing approaches like HUPEUMU-GRAM, HUIM-BPSO, IGA RLOFF, and IPSO RLOFF using metrics like execution time, convergence speed, and the percentage of high-utility itemsets mined. From the evaluation it is observed that the proposed IPSO RLON perfroms better than the other methodology.","PeriodicalId":42021,"journal":{"name":"International Journal of Next-Generation Computing","volume":"17 10","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Utility Itemset Extraction using PSO with Online Control Parameter Calibration\",\"authors\":\"L. K., SURESH S, SAVITHA S, ANANDAMURUGAN S\",\"doi\":\"10.47164/ijngc.v15i1.1643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the use of evolutionary computation for mining high-value patterns from benchmark datasets. The approach employs a fitness function to assess the usefulness of each pattern. However, the effectiveness of evolutionary algorithms heavily relies on the chosen strategy parameters during execution. Conventional methods set these parameters arbitrarily, often leading to suboptimal solutions. To address this limitation, the research proposes a method for dynamically adjusting strategy parameters using temporal difference approaches, a machine learning technique called Reinforcement Learning (RL). Specifically, the proposed IPSO RLON algorithm utilizes SARSA learning to intelligently adapt the Crossover Rate and Mutation Rate within the Practical Swarm Optimization Algorithm. This allows IPSO RLON to effectively mine high-utility itemsets from the data.The key benefit of IPSO RLON lies in its adaptive control parameters. This enables it to discover optimal high-utility itemsets when applied to various benchmark datasets. To assess its performance, IPSO RLON is compared to existing approaches like HUPEUMU-GRAM, HUIM-BPSO, IGA RLOFF, and IPSO RLOFF using metrics like execution time, convergence speed, and the percentage of high-utility itemsets mined. From the evaluation it is observed that the proposed IPSO RLON perfroms better than the other methodology.\",\"PeriodicalId\":42021,\"journal\":{\"name\":\"International Journal of Next-Generation Computing\",\"volume\":\"17 10\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Next-Generation Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47164/ijngc.v15i1.1643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Next-Generation Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47164/ijngc.v15i1.1643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了利用进化计算从基准数据集中挖掘高价值模式的方法。该方法采用适合度函数来评估每个模式的有用性。然而,进化算法的有效性在很大程度上取决于执行过程中选择的策略参数。传统方法任意设置这些参数,往往会导致次优解决方案的出现。为解决这一局限性,研究提出了一种利用时差方法动态调整策略参数的方法,这是一种称为强化学习(RL)的机器学习技术。具体来说,所提出的 IPSO RLON 算法利用 SARSA 学习来智能调整实用蜂群优化算法中的交叉率和突变率。IPSO RLON 的主要优势在于其自适应控制参数。IPSO RLON 的主要优势在于其自适应控制参数,这使其在应用于各种基准数据集时,能够发现最佳的高实用性项目集。为了评估 IPSO RLON 的性能,我们使用执行时间、收敛速度和挖掘出的高实用性项目集百分比等指标,将 IPSO RLON 与 HUPEUMU-GRAM、HUIM-BPSO、IGA RLOFF 和 IPSO RLOFF 等现有方法进行了比较。评估结果表明,提议的 IPSO RLON 比其他方法更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Utility Itemset Extraction using PSO with Online Control Parameter Calibration
This study investigates the use of evolutionary computation for mining high-value patterns from benchmark datasets. The approach employs a fitness function to assess the usefulness of each pattern. However, the effectiveness of evolutionary algorithms heavily relies on the chosen strategy parameters during execution. Conventional methods set these parameters arbitrarily, often leading to suboptimal solutions. To address this limitation, the research proposes a method for dynamically adjusting strategy parameters using temporal difference approaches, a machine learning technique called Reinforcement Learning (RL). Specifically, the proposed IPSO RLON algorithm utilizes SARSA learning to intelligently adapt the Crossover Rate and Mutation Rate within the Practical Swarm Optimization Algorithm. This allows IPSO RLON to effectively mine high-utility itemsets from the data.The key benefit of IPSO RLON lies in its adaptive control parameters. This enables it to discover optimal high-utility itemsets when applied to various benchmark datasets. To assess its performance, IPSO RLON is compared to existing approaches like HUPEUMU-GRAM, HUIM-BPSO, IGA RLOFF, and IPSO RLOFF using metrics like execution time, convergence speed, and the percentage of high-utility itemsets mined. From the evaluation it is observed that the proposed IPSO RLON perfroms better than the other methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Next-Generation Computing
International Journal of Next-Generation Computing COMPUTER SCIENCE, THEORY & METHODS-
自引率
66.70%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信