调节氧化硅与碳之间的物理和化学联系,制造高性能锂离子电池

Kaiyuan Zhang, Jiarui Xing, Huili Peng, Jichao Gao, Shuheng Ai, Qiwang Zhou, Di Yang, Xin Gu
{"title":"调节氧化硅与碳之间的物理和化学联系,制造高性能锂离子电池","authors":"Kaiyuan Zhang, Jiarui Xing, Huili Peng, Jichao Gao, Shuheng Ai, Qiwang Zhou, Di Yang, Xin Gu","doi":"10.20517/energymater.2023.102","DOIUrl":null,"url":null,"abstract":"SiOx is an encouraging anode material for high-energy lithium-ion batteries owing to the following unique characteristics: a relatively high theoretical capacity, low operating potential, ample resource availability, and, most importantly, lower volume changes compared to Si. However, its utilization has been hindered by a significant ~200% volume change during lithiation and low conductivity, leading to the breakdown of anode materials and accelerated capacity degradation. This study presents a novel SiOx/G/C composite comprising SiOx nanoparticles, graphite, and carbon nanotubes fabricated through a simple ball milling and annealing process. This composite features a dual-carbon framework interconnected with SiOx via C–O–Si bonds, enhancing reaction kinetics and accommodating volume fluctuations. These enhancements translate into remarkable advancements in cycling stability and rate performance. Specifically, as-prepared SiOx/G/C exhibits a high capacity retention of ~700 mAh·g-1 over 500 charging/discharging times at 1.0 A·g-1. Furthermore, when incorporated into a full-cell configuration (SiOx/G/C//LiNi1/3Co1/3Mn1/3O2), this system demonstrates a reversible capacity of 113 mAh·g-1 over 100 cycles at 1.0 mA·cm-2, underscoring its practical viability.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":"23 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of physical and chemical connections between SiOx and carbon for high-performance lithium-ion batteries\",\"authors\":\"Kaiyuan Zhang, Jiarui Xing, Huili Peng, Jichao Gao, Shuheng Ai, Qiwang Zhou, Di Yang, Xin Gu\",\"doi\":\"10.20517/energymater.2023.102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SiOx is an encouraging anode material for high-energy lithium-ion batteries owing to the following unique characteristics: a relatively high theoretical capacity, low operating potential, ample resource availability, and, most importantly, lower volume changes compared to Si. However, its utilization has been hindered by a significant ~200% volume change during lithiation and low conductivity, leading to the breakdown of anode materials and accelerated capacity degradation. This study presents a novel SiOx/G/C composite comprising SiOx nanoparticles, graphite, and carbon nanotubes fabricated through a simple ball milling and annealing process. This composite features a dual-carbon framework interconnected with SiOx via C–O–Si bonds, enhancing reaction kinetics and accommodating volume fluctuations. These enhancements translate into remarkable advancements in cycling stability and rate performance. Specifically, as-prepared SiOx/G/C exhibits a high capacity retention of ~700 mAh·g-1 over 500 charging/discharging times at 1.0 A·g-1. Furthermore, when incorporated into a full-cell configuration (SiOx/G/C//LiNi1/3Co1/3Mn1/3O2), this system demonstrates a reversible capacity of 113 mAh·g-1 over 100 cycles at 1.0 mA·cm-2, underscoring its practical viability.\",\"PeriodicalId\":516139,\"journal\":{\"name\":\"Energy Materials\",\"volume\":\"23 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/energymater.2023.102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2023.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氧化硅是一种令人鼓舞的高能锂离子电池负极材料,它具有以下独特特性:理论容量相对较高、工作电位较低、资源充足,最重要的是,与硅相比,体积变化较小。然而,由于锂化过程中体积会发生约 200% 的显著变化,且电导率较低,导致负极材料分解和容量加速衰减,因而阻碍了锂离子电池的利用。本研究介绍了一种新型 SiOx/G/C 复合材料,它由 SiOx 纳米颗粒、石墨和碳纳米管组成,通过简单的球磨和退火工艺制作而成。这种复合材料具有通过 C-O-Si 键与 SiOx 相互连接的双碳框架,可增强反应动力学并适应体积波动。这些改进使循环稳定性和速率性能显著提高。具体来说,制备的 SiOx/G/C 在 1.0 A-g-1 的条件下,经过 500 次充电/放电,显示出 ~700 mAh-g-1 的高容量保持率。此外,当将该系统整合到全电池配置(SiOx/G/C//LiNi1/3Co1/3Mn1/3O2)中时,在 1.0 mA-cm-2 的条件下循环 100 次,可显示出 113 mAh-g-1 的可逆容量,这突出表明了该系统的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulation of physical and chemical connections between SiOx and carbon for high-performance lithium-ion batteries
SiOx is an encouraging anode material for high-energy lithium-ion batteries owing to the following unique characteristics: a relatively high theoretical capacity, low operating potential, ample resource availability, and, most importantly, lower volume changes compared to Si. However, its utilization has been hindered by a significant ~200% volume change during lithiation and low conductivity, leading to the breakdown of anode materials and accelerated capacity degradation. This study presents a novel SiOx/G/C composite comprising SiOx nanoparticles, graphite, and carbon nanotubes fabricated through a simple ball milling and annealing process. This composite features a dual-carbon framework interconnected with SiOx via C–O–Si bonds, enhancing reaction kinetics and accommodating volume fluctuations. These enhancements translate into remarkable advancements in cycling stability and rate performance. Specifically, as-prepared SiOx/G/C exhibits a high capacity retention of ~700 mAh·g-1 over 500 charging/discharging times at 1.0 A·g-1. Furthermore, when incorporated into a full-cell configuration (SiOx/G/C//LiNi1/3Co1/3Mn1/3O2), this system demonstrates a reversible capacity of 113 mAh·g-1 over 100 cycles at 1.0 mA·cm-2, underscoring its practical viability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信