{"title":"调节氧化硅与碳之间的物理和化学联系,制造高性能锂离子电池","authors":"Kaiyuan Zhang, Jiarui Xing, Huili Peng, Jichao Gao, Shuheng Ai, Qiwang Zhou, Di Yang, Xin Gu","doi":"10.20517/energymater.2023.102","DOIUrl":null,"url":null,"abstract":"SiOx is an encouraging anode material for high-energy lithium-ion batteries owing to the following unique characteristics: a relatively high theoretical capacity, low operating potential, ample resource availability, and, most importantly, lower volume changes compared to Si. However, its utilization has been hindered by a significant ~200% volume change during lithiation and low conductivity, leading to the breakdown of anode materials and accelerated capacity degradation. This study presents a novel SiOx/G/C composite comprising SiOx nanoparticles, graphite, and carbon nanotubes fabricated through a simple ball milling and annealing process. This composite features a dual-carbon framework interconnected with SiOx via C–O–Si bonds, enhancing reaction kinetics and accommodating volume fluctuations. These enhancements translate into remarkable advancements in cycling stability and rate performance. Specifically, as-prepared SiOx/G/C exhibits a high capacity retention of ~700 mAh·g-1 over 500 charging/discharging times at 1.0 A·g-1. Furthermore, when incorporated into a full-cell configuration (SiOx/G/C//LiNi1/3Co1/3Mn1/3O2), this system demonstrates a reversible capacity of 113 mAh·g-1 over 100 cycles at 1.0 mA·cm-2, underscoring its practical viability.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":"23 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of physical and chemical connections between SiOx and carbon for high-performance lithium-ion batteries\",\"authors\":\"Kaiyuan Zhang, Jiarui Xing, Huili Peng, Jichao Gao, Shuheng Ai, Qiwang Zhou, Di Yang, Xin Gu\",\"doi\":\"10.20517/energymater.2023.102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SiOx is an encouraging anode material for high-energy lithium-ion batteries owing to the following unique characteristics: a relatively high theoretical capacity, low operating potential, ample resource availability, and, most importantly, lower volume changes compared to Si. However, its utilization has been hindered by a significant ~200% volume change during lithiation and low conductivity, leading to the breakdown of anode materials and accelerated capacity degradation. This study presents a novel SiOx/G/C composite comprising SiOx nanoparticles, graphite, and carbon nanotubes fabricated through a simple ball milling and annealing process. This composite features a dual-carbon framework interconnected with SiOx via C–O–Si bonds, enhancing reaction kinetics and accommodating volume fluctuations. These enhancements translate into remarkable advancements in cycling stability and rate performance. Specifically, as-prepared SiOx/G/C exhibits a high capacity retention of ~700 mAh·g-1 over 500 charging/discharging times at 1.0 A·g-1. Furthermore, when incorporated into a full-cell configuration (SiOx/G/C//LiNi1/3Co1/3Mn1/3O2), this system demonstrates a reversible capacity of 113 mAh·g-1 over 100 cycles at 1.0 mA·cm-2, underscoring its practical viability.\",\"PeriodicalId\":516139,\"journal\":{\"name\":\"Energy Materials\",\"volume\":\"23 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/energymater.2023.102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2023.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modulation of physical and chemical connections between SiOx and carbon for high-performance lithium-ion batteries
SiOx is an encouraging anode material for high-energy lithium-ion batteries owing to the following unique characteristics: a relatively high theoretical capacity, low operating potential, ample resource availability, and, most importantly, lower volume changes compared to Si. However, its utilization has been hindered by a significant ~200% volume change during lithiation and low conductivity, leading to the breakdown of anode materials and accelerated capacity degradation. This study presents a novel SiOx/G/C composite comprising SiOx nanoparticles, graphite, and carbon nanotubes fabricated through a simple ball milling and annealing process. This composite features a dual-carbon framework interconnected with SiOx via C–O–Si bonds, enhancing reaction kinetics and accommodating volume fluctuations. These enhancements translate into remarkable advancements in cycling stability and rate performance. Specifically, as-prepared SiOx/G/C exhibits a high capacity retention of ~700 mAh·g-1 over 500 charging/discharging times at 1.0 A·g-1. Furthermore, when incorporated into a full-cell configuration (SiOx/G/C//LiNi1/3Co1/3Mn1/3O2), this system demonstrates a reversible capacity of 113 mAh·g-1 over 100 cycles at 1.0 mA·cm-2, underscoring its practical viability.