基于深度学习的肺炎自动检测(使用 X 光图像)综述

Achyuta, Tejas Y S, Darshan H K, Chirag G C, Jagadeesh B
{"title":"基于深度学习的肺炎自动检测(使用 X 光图像)综述","authors":"Achyuta, Tejas Y S, Darshan H K, Chirag G C, Jagadeesh B","doi":"10.36948/ijfmr.2024.v06i03.20177","DOIUrl":null,"url":null,"abstract":"This paper provides a comprehensive literature survey on the application of various deep learning models for pneumonia detection using chest X-ray images. It reviews numerous studies that propose different architectures and techniques aimed at enhancing detection accuracy and efficiency. The survey covers the use of methods such as transfer learning and ensemble techniques to mitigate data scarcity and augment model performance. It also discusses the development of advanced algorithms for the precise identification and localization of pneumonia indications. Despite promising results, the survey acknowledges persisting challenges, including the need for high accuracy in medical testing and the limited availability of annotated medical images. This review underscores the transformative potential of deep learning in pneumonia detection and identifies areas for future research.","PeriodicalId":391859,"journal":{"name":"International Journal For Multidisciplinary Research","volume":"20 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review on Deep Learning Based Automated Pneumonia Detection using X-ray images\",\"authors\":\"Achyuta, Tejas Y S, Darshan H K, Chirag G C, Jagadeesh B\",\"doi\":\"10.36948/ijfmr.2024.v06i03.20177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a comprehensive literature survey on the application of various deep learning models for pneumonia detection using chest X-ray images. It reviews numerous studies that propose different architectures and techniques aimed at enhancing detection accuracy and efficiency. The survey covers the use of methods such as transfer learning and ensemble techniques to mitigate data scarcity and augment model performance. It also discusses the development of advanced algorithms for the precise identification and localization of pneumonia indications. Despite promising results, the survey acknowledges persisting challenges, including the need for high accuracy in medical testing and the limited availability of annotated medical images. This review underscores the transformative potential of deep learning in pneumonia detection and identifies areas for future research.\",\"PeriodicalId\":391859,\"journal\":{\"name\":\"International Journal For Multidisciplinary Research\",\"volume\":\"20 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal For Multidisciplinary Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36948/ijfmr.2024.v06i03.20177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal For Multidisciplinary Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36948/ijfmr.2024.v06i03.20177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对使用胸部 X 光图像检测肺炎时各种深度学习模型的应用进行了全面的文献调查。它回顾了大量研究,这些研究提出了旨在提高检测准确性和效率的不同架构和技术。调查涵盖了迁移学习和集合技术等方法的使用,以缓解数据稀缺性并增强模型性能。调查还讨论了用于精确识别和定位肺炎指征的先进算法的开发情况。尽管取得了可喜的成果,但调查也承认挑战依然存在,包括医疗测试中对高准确性的需求以及注释医学图像的有限可用性。本综述强调了深度学习在肺炎检测方面的变革潜力,并指出了未来研究的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Review on Deep Learning Based Automated Pneumonia Detection using X-ray images
This paper provides a comprehensive literature survey on the application of various deep learning models for pneumonia detection using chest X-ray images. It reviews numerous studies that propose different architectures and techniques aimed at enhancing detection accuracy and efficiency. The survey covers the use of methods such as transfer learning and ensemble techniques to mitigate data scarcity and augment model performance. It also discusses the development of advanced algorithms for the precise identification and localization of pneumonia indications. Despite promising results, the survey acknowledges persisting challenges, including the need for high accuracy in medical testing and the limited availability of annotated medical images. This review underscores the transformative potential of deep learning in pneumonia detection and identifies areas for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信