技术视角:合成数据需要可重复性基准

Xi He
{"title":"技术视角:合成数据需要可重复性基准","authors":"Xi He","doi":"10.1145/3665252.3665266","DOIUrl":null,"url":null,"abstract":"Synthetic data is a vital substitute for real sensitive personal data in supporting social science research and policy studies. Extensive prior research has delved into various models for generating synthetic data, from traditional statistical approaches to cutting-edge deep-learning methods. However, selecting the most suitable one for unforeseen applications poses a significant challenge due to the varying strengths and weaknesses, dependent on factors such as the application domain, data distribution, analytical requirements, and privacy considerations.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"21 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical Perspective: Synthetic Data Needs a Reproducibility Benchmark\",\"authors\":\"Xi He\",\"doi\":\"10.1145/3665252.3665266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic data is a vital substitute for real sensitive personal data in supporting social science research and policy studies. Extensive prior research has delved into various models for generating synthetic data, from traditional statistical approaches to cutting-edge deep-learning methods. However, selecting the most suitable one for unforeseen applications poses a significant challenge due to the varying strengths and weaknesses, dependent on factors such as the application domain, data distribution, analytical requirements, and privacy considerations.\",\"PeriodicalId\":346332,\"journal\":{\"name\":\"ACM SIGMOD Record\",\"volume\":\"21 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGMOD Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3665252.3665266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3665252.3665266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在支持社会科学研究和政策研究方面,合成数据是真实敏感个人数据的重要替代品。此前的大量研究已经深入探讨了生成合成数据的各种模型,从传统的统计方法到前沿的深度学习方法,不一而足。然而,由于优缺点各不相同,取决于应用领域、数据分布、分析要求和隐私考虑等因素,为不可预见的应用选择最合适的模型是一项重大挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Technical Perspective: Synthetic Data Needs a Reproducibility Benchmark
Synthetic data is a vital substitute for real sensitive personal data in supporting social science research and policy studies. Extensive prior research has delved into various models for generating synthetic data, from traditional statistical approaches to cutting-edge deep-learning methods. However, selecting the most suitable one for unforeseen applications poses a significant challenge due to the varying strengths and weaknesses, dependent on factors such as the application domain, data distribution, analytical requirements, and privacy considerations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信