基于相关性分析和具有自我关注功能的 CNN-BiLSTM 的工业时间序列数据异常检测

Xinyi Yu, Bingbing Zeng, Lidong Wang
{"title":"基于相关性分析和具有自我关注功能的 CNN-BiLSTM 的工业时间序列数据异常检测","authors":"Xinyi Yu, Bingbing Zeng, Lidong Wang","doi":"10.56557/ajomcor/2024/v31i28697","DOIUrl":null,"url":null,"abstract":"This paper aims to propose an anomaly detection model for industrial time series data based on correlation analysis and CNN-BiLSTM with self-attention to solve the problem of abnormal data detection in the field of industrial data analysis. Industrial data anomaly detection is an important task in the industrial field, which can help people to timely understand the production operation status and real-time record and perception of the operating environment. This paper introduces two key technologies: correlation analysis and CNN-BiLSTM with self-attention, and how to combine them to build an effective anomaly detection model for industrial time series data. Through experimental evaluation, this paper proves the effectiveness and superiority of the proposed model in industrial data anomaly detection tasks.","PeriodicalId":200824,"journal":{"name":"Asian Journal of Mathematics and Computer Research","volume":"6 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomaly Detection for Industrial Time Series Data Based on Correlation Analysis and CNN-BiLSTM with Self-attention\",\"authors\":\"Xinyi Yu, Bingbing Zeng, Lidong Wang\",\"doi\":\"10.56557/ajomcor/2024/v31i28697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to propose an anomaly detection model for industrial time series data based on correlation analysis and CNN-BiLSTM with self-attention to solve the problem of abnormal data detection in the field of industrial data analysis. Industrial data anomaly detection is an important task in the industrial field, which can help people to timely understand the production operation status and real-time record and perception of the operating environment. This paper introduces two key technologies: correlation analysis and CNN-BiLSTM with self-attention, and how to combine them to build an effective anomaly detection model for industrial time series data. Through experimental evaluation, this paper proves the effectiveness and superiority of the proposed model in industrial data anomaly detection tasks.\",\"PeriodicalId\":200824,\"journal\":{\"name\":\"Asian Journal of Mathematics and Computer Research\",\"volume\":\"6 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics and Computer Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56557/ajomcor/2024/v31i28697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics and Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56557/ajomcor/2024/v31i28697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在提出一种基于相关性分析和具有自注意力的 CNN-BiLSTM 的工业时间序列数据异常检测模型,以解决工业数据分析领域的异常数据检测问题。工业数据异常检测是工业领域的一项重要工作,可以帮助人们及时了解生产运行状况,实时记录和感知运行环境。本文介绍了相关性分析和带自注意的 CNN-BiLSTM 两项关键技术,以及如何将它们结合起来构建有效的工业时间序列数据异常检测模型。通过实验评估,本文证明了所提模型在工业数据异常检测任务中的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly Detection for Industrial Time Series Data Based on Correlation Analysis and CNN-BiLSTM with Self-attention
This paper aims to propose an anomaly detection model for industrial time series data based on correlation analysis and CNN-BiLSTM with self-attention to solve the problem of abnormal data detection in the field of industrial data analysis. Industrial data anomaly detection is an important task in the industrial field, which can help people to timely understand the production operation status and real-time record and perception of the operating environment. This paper introduces two key technologies: correlation analysis and CNN-BiLSTM with self-attention, and how to combine them to build an effective anomaly detection model for industrial time series data. Through experimental evaluation, this paper proves the effectiveness and superiority of the proposed model in industrial data anomaly detection tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信