{"title":"无质量拓扑缺陷对宇宙学结构的束缚","authors":"Richard Lieu","doi":"10.1093/mnras/stae1258","DOIUrl":null,"url":null,"abstract":"\n Assuming spherical symmetry and weak field, it is shown that if one solves the Poisson equation or the Einstein field equations sourced by a topological defect, i.e. a singularity of a very specific form, the result is a localised gravitational field capable of driving flat rotation (i.e. Keplerian circular orbits at a constant speed for all radii) of test masses on a thin spherical shell without any underlying mass. Moreover, a large-scale structure which exploits this solution by assembling concentrically a number of such topological defects can establish a flat stellar or galactic rotation curve, and can also deflect light in the same manner as an equipotential (isothermal) sphere. Thus the need for dark matter or modified gravity theory is mitigated, at least in part.","PeriodicalId":506975,"journal":{"name":"Monthly Notices of the Royal Astronomical Society","volume":"5 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The binding of cosmological structures by massless topological defects\",\"authors\":\"Richard Lieu\",\"doi\":\"10.1093/mnras/stae1258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Assuming spherical symmetry and weak field, it is shown that if one solves the Poisson equation or the Einstein field equations sourced by a topological defect, i.e. a singularity of a very specific form, the result is a localised gravitational field capable of driving flat rotation (i.e. Keplerian circular orbits at a constant speed for all radii) of test masses on a thin spherical shell without any underlying mass. Moreover, a large-scale structure which exploits this solution by assembling concentrically a number of such topological defects can establish a flat stellar or galactic rotation curve, and can also deflect light in the same manner as an equipotential (isothermal) sphere. Thus the need for dark matter or modified gravity theory is mitigated, at least in part.\",\"PeriodicalId\":506975,\"journal\":{\"name\":\"Monthly Notices of the Royal Astronomical Society\",\"volume\":\"5 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Notices of the Royal Astronomical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnras/stae1258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/stae1258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The binding of cosmological structures by massless topological defects
Assuming spherical symmetry and weak field, it is shown that if one solves the Poisson equation or the Einstein field equations sourced by a topological defect, i.e. a singularity of a very specific form, the result is a localised gravitational field capable of driving flat rotation (i.e. Keplerian circular orbits at a constant speed for all radii) of test masses on a thin spherical shell without any underlying mass. Moreover, a large-scale structure which exploits this solution by assembling concentrically a number of such topological defects can establish a flat stellar or galactic rotation curve, and can also deflect light in the same manner as an equipotential (isothermal) sphere. Thus the need for dark matter or modified gravity theory is mitigated, at least in part.