利用细菌觅食优化技术对铝 356 合金钻孔参数进行数值研究

Pandian Pitchipoo, Muthiah Athi, Manikandan Annamalai, Jeyakumar Kadarkarai, Rajakarunakaran Sivaprakasam
{"title":"利用细菌觅食优化技术对铝 356 合金钻孔参数进行数值研究","authors":"Pandian Pitchipoo, Muthiah Athi, Manikandan Annamalai, Jeyakumar Kadarkarai, Rajakarunakaran Sivaprakasam","doi":"10.4028/p-6hukkb","DOIUrl":null,"url":null,"abstract":"A mechanical work piece created industrially frequently contains more than one machining process. Furthermore, it is a common activity of programmers, who make this selection every time a milling and drilling operation is conducted. Tool wear and borehole quality are two essential challenges for high precision drilling procedures, with Al 356 alloy being employed in experimental planning. Drilling specifications will be assessed in this work to get optimal parameters in minimizing the influence of drilling damage on alloy using a swarm-based optimization model. The drilling parameters are optimized using the Bacterial Foraging Optimization (BFO) method, which includes three control factors: depth, feed rate, and spindle speed. Each parameter is designed in three levels, with multiple performance characteristics such as thrust force, surface roughness, and delamination factor. This investigation was carried out in order to obtain the proper optimization. The feed rate, next to the spindle speed, was discovered to be the essential element inducing lamination in drilling, with this phenomenon occurring in each diameter of the drill bit. The results reveal that the feed rate and drill type are the most important parameters influencing the drilling process, and that employing this strategy can successfully improve drilling process outcomes.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Study of Drilling Parameters with Al 356 Alloy Using Bacterial Foraging Optimization\",\"authors\":\"Pandian Pitchipoo, Muthiah Athi, Manikandan Annamalai, Jeyakumar Kadarkarai, Rajakarunakaran Sivaprakasam\",\"doi\":\"10.4028/p-6hukkb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mechanical work piece created industrially frequently contains more than one machining process. Furthermore, it is a common activity of programmers, who make this selection every time a milling and drilling operation is conducted. Tool wear and borehole quality are two essential challenges for high precision drilling procedures, with Al 356 alloy being employed in experimental planning. Drilling specifications will be assessed in this work to get optimal parameters in minimizing the influence of drilling damage on alloy using a swarm-based optimization model. The drilling parameters are optimized using the Bacterial Foraging Optimization (BFO) method, which includes three control factors: depth, feed rate, and spindle speed. Each parameter is designed in three levels, with multiple performance characteristics such as thrust force, surface roughness, and delamination factor. This investigation was carried out in order to obtain the proper optimization. The feed rate, next to the spindle speed, was discovered to be the essential element inducing lamination in drilling, with this phenomenon occurring in each diameter of the drill bit. The results reveal that the feed rate and drill type are the most important parameters influencing the drilling process, and that employing this strategy can successfully improve drilling process outcomes.\",\"PeriodicalId\":18262,\"journal\":{\"name\":\"Materials Science Forum\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-6hukkb\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-6hukkb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在工业生产中,一个机械工件往往包含不止一个加工工序。此外,每次进行铣削和钻孔操作时,程序员都要进行选择,这也是一项常见的工作。刀具磨损和钻孔质量是高精度钻孔程序面临的两大挑战,在实验计划中使用了铝 356 合金。在这项工作中,将使用基于蜂群的优化模型对钻孔规格进行评估,以获得最佳参数,最大限度地减少钻孔损伤对合金的影响。钻孔参数采用细菌觅食优化(BFO)方法进行优化,其中包括三个控制因素:深度、进给率和主轴转速。每个参数设计为三个级别,具有多种性能特征,如推力、表面粗糙度和分层系数。进行这项调查是为了获得适当的优化。研究发现,除了主轴转速之外,进给速度也是诱发钻孔分层的基本要素,钻头的每个直径都会出现这种现象。研究结果表明,进给速度和钻头类型是影响钻孔过程的最重要参数,采用这种策略可以成功改善钻孔过程的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Study of Drilling Parameters with Al 356 Alloy Using Bacterial Foraging Optimization
A mechanical work piece created industrially frequently contains more than one machining process. Furthermore, it is a common activity of programmers, who make this selection every time a milling and drilling operation is conducted. Tool wear and borehole quality are two essential challenges for high precision drilling procedures, with Al 356 alloy being employed in experimental planning. Drilling specifications will be assessed in this work to get optimal parameters in minimizing the influence of drilling damage on alloy using a swarm-based optimization model. The drilling parameters are optimized using the Bacterial Foraging Optimization (BFO) method, which includes three control factors: depth, feed rate, and spindle speed. Each parameter is designed in three levels, with multiple performance characteristics such as thrust force, surface roughness, and delamination factor. This investigation was carried out in order to obtain the proper optimization. The feed rate, next to the spindle speed, was discovered to be the essential element inducing lamination in drilling, with this phenomenon occurring in each diameter of the drill bit. The results reveal that the feed rate and drill type are the most important parameters influencing the drilling process, and that employing this strategy can successfully improve drilling process outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信