基于优化 YOLOv5 的太阳能表面缺陷检测

V. SAI TARUN
{"title":"基于优化 YOLOv5 的太阳能表面缺陷检测","authors":"V. SAI TARUN","doi":"10.36948/ijfmr.2024.v06i03.19496","DOIUrl":null,"url":null,"abstract":"This study introduces an advanced Solar Cell Surface Defect Detection method utilizing an improved YOLO v5, FaserRCNN and YOLOV6 algorithms. Addressing the challenges posed by complex image backgrounds, variable defect morphology, and large-scale differences, our approach incorporates deformable convolution in the CSP module for adaptive learning scale and perceptual field size. The integration of the ECA-Net attention mechanism enhances feature extraction capabilities, while the addition of a tiny defect prediction head improves detection accuracy across different scales. Optimization techniques, including Mosaic and MixUp data augmentation, K-meansCC clustering anchor box algorithm, and the CIOU loss function, contribute to superior model performance. Experimental results demonstrate an impressive accuracy of 97.14% for YOLOv5, outperforming Faster R-CNN's 90.66%. Further extension studies on YOLOv6, YOLOv7, and YOLOv8 reveal YOLOv6 as the most effective, achieving a remarkable accuracy of 98.28%. This research establishes a robust solution for solar cell defect detection, showcasing the efficacy of our proposed algorithm for industrial applications.","PeriodicalId":391859,"journal":{"name":"International Journal For Multidisciplinary Research","volume":"79 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solar Surface Defect Detection Based on Optimized YOLOv5\",\"authors\":\"V. SAI TARUN\",\"doi\":\"10.36948/ijfmr.2024.v06i03.19496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces an advanced Solar Cell Surface Defect Detection method utilizing an improved YOLO v5, FaserRCNN and YOLOV6 algorithms. Addressing the challenges posed by complex image backgrounds, variable defect morphology, and large-scale differences, our approach incorporates deformable convolution in the CSP module for adaptive learning scale and perceptual field size. The integration of the ECA-Net attention mechanism enhances feature extraction capabilities, while the addition of a tiny defect prediction head improves detection accuracy across different scales. Optimization techniques, including Mosaic and MixUp data augmentation, K-meansCC clustering anchor box algorithm, and the CIOU loss function, contribute to superior model performance. Experimental results demonstrate an impressive accuracy of 97.14% for YOLOv5, outperforming Faster R-CNN's 90.66%. Further extension studies on YOLOv6, YOLOv7, and YOLOv8 reveal YOLOv6 as the most effective, achieving a remarkable accuracy of 98.28%. This research establishes a robust solution for solar cell defect detection, showcasing the efficacy of our proposed algorithm for industrial applications.\",\"PeriodicalId\":391859,\"journal\":{\"name\":\"International Journal For Multidisciplinary Research\",\"volume\":\"79 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal For Multidisciplinary Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36948/ijfmr.2024.v06i03.19496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal For Multidisciplinary Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36948/ijfmr.2024.v06i03.19496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用改进的 YOLO v5、FaserRCNN 和 YOLOV6 算法,介绍了一种先进的太阳能电池表面缺陷检测方法。为了应对复杂图像背景、可变缺陷形态和大规模差异带来的挑战,我们的方法在 CSP 模块中加入了可变形卷积,以实现自适应学习规模和感知区域大小。ECA-Net 注意机制的整合增强了特征提取能力,而微小缺陷预测头的加入则提高了不同尺度的检测精度。包括 Mosaic 和 MixUp 数据扩增、K-meansCC 聚类锚箱算法和 CIOU 损失函数在内的优化技术为卓越的模型性能做出了贡献。实验结果表明,YOLOv5 的准确率达到了令人印象深刻的 97.14%,超过了 Faster R-CNN 的 90.66%。对 YOLOv6、YOLOv7 和 YOLOv8 的进一步扩展研究表明,YOLOv6 是最有效的,其准确率高达 98.28%。这项研究为太阳能电池缺陷检测建立了一个稳健的解决方案,展示了我们提出的算法在工业应用中的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solar Surface Defect Detection Based on Optimized YOLOv5
This study introduces an advanced Solar Cell Surface Defect Detection method utilizing an improved YOLO v5, FaserRCNN and YOLOV6 algorithms. Addressing the challenges posed by complex image backgrounds, variable defect morphology, and large-scale differences, our approach incorporates deformable convolution in the CSP module for adaptive learning scale and perceptual field size. The integration of the ECA-Net attention mechanism enhances feature extraction capabilities, while the addition of a tiny defect prediction head improves detection accuracy across different scales. Optimization techniques, including Mosaic and MixUp data augmentation, K-meansCC clustering anchor box algorithm, and the CIOU loss function, contribute to superior model performance. Experimental results demonstrate an impressive accuracy of 97.14% for YOLOv5, outperforming Faster R-CNN's 90.66%. Further extension studies on YOLOv6, YOLOv7, and YOLOv8 reveal YOLOv6 as the most effective, achieving a remarkable accuracy of 98.28%. This research establishes a robust solution for solar cell defect detection, showcasing the efficacy of our proposed algorithm for industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信