关于双周期莱昂纳多序列的说明

Paula Maria Machado Cruz Catarino, E. Spreafico
{"title":"关于双周期莱昂纳多序列的说明","authors":"Paula Maria Machado Cruz Catarino, E. Spreafico","doi":"10.52737/18291163-2024.16.5-1-17","DOIUrl":null,"url":null,"abstract":"In this work, we define a new generalization of the Leonardo sequence by the recurrence relation $GLe_n=aGLe_{n-1}+GLe_{n-2}+a$ (for even $n$) and $GLe_n=bGLe_{n-1}+GLe_{n-2}+b$ (for odd $n$) with the initial conditions $GLe_0=2a-1$ and $GLe_1=2ab-1$, where $a$ and $b$ are real nonzero numbers. Some algebraic properties of the sequence $\\{GLe_n\\}_{n \\geq 0}$ are studied and several identities, including the generating function and Binet's formula, are established.","PeriodicalId":505381,"journal":{"name":"Armenian Journal of Mathematics","volume":"49 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Bi-Periodic Leonardo Sequence\",\"authors\":\"Paula Maria Machado Cruz Catarino, E. Spreafico\",\"doi\":\"10.52737/18291163-2024.16.5-1-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we define a new generalization of the Leonardo sequence by the recurrence relation $GLe_n=aGLe_{n-1}+GLe_{n-2}+a$ (for even $n$) and $GLe_n=bGLe_{n-1}+GLe_{n-2}+b$ (for odd $n$) with the initial conditions $GLe_0=2a-1$ and $GLe_1=2ab-1$, where $a$ and $b$ are real nonzero numbers. Some algebraic properties of the sequence $\\\\{GLe_n\\\\}_{n \\\\geq 0}$ are studied and several identities, including the generating function and Binet's formula, are established.\",\"PeriodicalId\":505381,\"journal\":{\"name\":\"Armenian Journal of Mathematics\",\"volume\":\"49 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Armenian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52737/18291163-2024.16.5-1-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Armenian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52737/18291163-2024.16.5-1-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们通过递推关系$GLe_n=aGLe_{n-1}+GLe_{n-2}+a$(对于偶数$n$)和$GLe_n=bGLe_{n-1}+GLe_{n-2}+b$(对于奇数$n$)定义了莱昂纳多序列的新广义,初始条件为$GLe_0=2a-1$和$GLe_1=2ab-1$,其中$a$和$b$为实数非零。研究了序列 $\{GLe_n\}_{n \geq 0}$的一些代数性质,并建立了包括生成函数和比奈公式在内的几个等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Bi-Periodic Leonardo Sequence
In this work, we define a new generalization of the Leonardo sequence by the recurrence relation $GLe_n=aGLe_{n-1}+GLe_{n-2}+a$ (for even $n$) and $GLe_n=bGLe_{n-1}+GLe_{n-2}+b$ (for odd $n$) with the initial conditions $GLe_0=2a-1$ and $GLe_1=2ab-1$, where $a$ and $b$ are real nonzero numbers. Some algebraic properties of the sequence $\{GLe_n\}_{n \geq 0}$ are studied and several identities, including the generating function and Binet's formula, are established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信