DBSP:流上的增量计算及其在数据库中的应用

Mihai Budiu, Tej Chajed, Frank McSherry, Leonid Ryzhyk, V. Tannen
{"title":"DBSP:流上的增量计算及其在数据库中的应用","authors":"Mihai Budiu, Tej Chajed, Frank McSherry, Leonid Ryzhyk, V. Tannen","doi":"10.1145/3665252.3665271","DOIUrl":null,"url":null,"abstract":"We describe DBSP, a framework for incremental computation. Incremental computations repeatedly evaluate a function on some input values that are \"changing\". The goal of an efficient implementation is to \"reuse\" previously computed results. Ideally, when presented with a new change to the input, an incremental computation should only perform work proportional to the size of the changes of the input, rather than to the size of the entire dataset.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"66 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DBSP: Incremental Computation on Streams and Its Applications to Databases\",\"authors\":\"Mihai Budiu, Tej Chajed, Frank McSherry, Leonid Ryzhyk, V. Tannen\",\"doi\":\"10.1145/3665252.3665271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe DBSP, a framework for incremental computation. Incremental computations repeatedly evaluate a function on some input values that are \\\"changing\\\". The goal of an efficient implementation is to \\\"reuse\\\" previously computed results. Ideally, when presented with a new change to the input, an incremental computation should only perform work proportional to the size of the changes of the input, rather than to the size of the entire dataset.\",\"PeriodicalId\":346332,\"journal\":{\"name\":\"ACM SIGMOD Record\",\"volume\":\"66 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGMOD Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3665252.3665271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3665252.3665271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了增量计算框架 DBSP。增量计算对一些 "不断变化 "的输入值反复评估一个函数。高效实现的目标是 "重复使用 "之前计算的结果。理想情况下,当输入值出现新变化时,增量计算只需执行与输入值变化大小成比例的工作,而不是与整个数据集大小成比例的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DBSP: Incremental Computation on Streams and Its Applications to Databases
We describe DBSP, a framework for incremental computation. Incremental computations repeatedly evaluate a function on some input values that are "changing". The goal of an efficient implementation is to "reuse" previously computed results. Ideally, when presented with a new change to the input, an incremental computation should only perform work proportional to the size of the changes of the input, rather than to the size of the entire dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信