Mihai Budiu, Tej Chajed, Frank McSherry, Leonid Ryzhyk, V. Tannen
{"title":"DBSP:流上的增量计算及其在数据库中的应用","authors":"Mihai Budiu, Tej Chajed, Frank McSherry, Leonid Ryzhyk, V. Tannen","doi":"10.1145/3665252.3665271","DOIUrl":null,"url":null,"abstract":"We describe DBSP, a framework for incremental computation. Incremental computations repeatedly evaluate a function on some input values that are \"changing\". The goal of an efficient implementation is to \"reuse\" previously computed results. Ideally, when presented with a new change to the input, an incremental computation should only perform work proportional to the size of the changes of the input, rather than to the size of the entire dataset.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"66 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DBSP: Incremental Computation on Streams and Its Applications to Databases\",\"authors\":\"Mihai Budiu, Tej Chajed, Frank McSherry, Leonid Ryzhyk, V. Tannen\",\"doi\":\"10.1145/3665252.3665271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe DBSP, a framework for incremental computation. Incremental computations repeatedly evaluate a function on some input values that are \\\"changing\\\". The goal of an efficient implementation is to \\\"reuse\\\" previously computed results. Ideally, when presented with a new change to the input, an incremental computation should only perform work proportional to the size of the changes of the input, rather than to the size of the entire dataset.\",\"PeriodicalId\":346332,\"journal\":{\"name\":\"ACM SIGMOD Record\",\"volume\":\"66 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGMOD Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3665252.3665271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3665252.3665271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DBSP: Incremental Computation on Streams and Its Applications to Databases
We describe DBSP, a framework for incremental computation. Incremental computations repeatedly evaluate a function on some input values that are "changing". The goal of an efficient implementation is to "reuse" previously computed results. Ideally, when presented with a new change to the input, an incremental computation should only perform work proportional to the size of the changes of the input, rather than to the size of the entire dataset.