尼古丁介导的帕金森病转基因草履虫模型疗法

Inam Ullah, Longhe Zhao, Shahab Uddin, Yangtao Zhou, Xin Wang, Hongyu Li
{"title":"尼古丁介导的帕金森病转基因草履虫模型疗法","authors":"Inam Ullah, Longhe Zhao, Shahab Uddin, Yangtao Zhou, Xin Wang, Hongyu Li","doi":"10.3389/fnagi.2024.1358141","DOIUrl":null,"url":null,"abstract":"Parkinson’s disease resultant in the degeneration of Dopaminergic neurons and accumulation of α-synuclein in the substantia nigra pars compacta. The synthetic therapeutics for Parkinson’s disease have moderate symptomatic benefits but cannot prevent or delay disease progression. In this study, nicotine was employed by using transgenic Caenorhabditis elegans Parkinson’s disease models to minimize the Parkinson’s disease symptoms. The results showed that the nicotine at 100, 150, and 200 μM doses reduced degeneration of Dopaminergic neurons caused by 6-hydroxydopamine (14, 33, and 40%), lowered the aggregative toxicity of α-synuclein by 53, 56, and 78%, respectively. The reduction in food-sensing behavioral disabilities of BZ555 was observed to be 18, 49, and 86%, respectively, with nicotine concentrations of 100 μM, 150 μM, and 200 μM. Additionally, nicotine was found to enhance Daf-16 nuclear translocation by 14, 31, and 49%, and dose-dependently increased SOD-3 expression by 10, 19, and 23%. In summary, the nicotine might a promising therapy option for Parkinson’s disease.","PeriodicalId":503985,"journal":{"name":"Frontiers in Aging Neuroscience","volume":"127 28","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nicotine-mediated therapy for Parkinson’s disease in transgenic Caenorhabditis elegans model\",\"authors\":\"Inam Ullah, Longhe Zhao, Shahab Uddin, Yangtao Zhou, Xin Wang, Hongyu Li\",\"doi\":\"10.3389/fnagi.2024.1358141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parkinson’s disease resultant in the degeneration of Dopaminergic neurons and accumulation of α-synuclein in the substantia nigra pars compacta. The synthetic therapeutics for Parkinson’s disease have moderate symptomatic benefits but cannot prevent or delay disease progression. In this study, nicotine was employed by using transgenic Caenorhabditis elegans Parkinson’s disease models to minimize the Parkinson’s disease symptoms. The results showed that the nicotine at 100, 150, and 200 μM doses reduced degeneration of Dopaminergic neurons caused by 6-hydroxydopamine (14, 33, and 40%), lowered the aggregative toxicity of α-synuclein by 53, 56, and 78%, respectively. The reduction in food-sensing behavioral disabilities of BZ555 was observed to be 18, 49, and 86%, respectively, with nicotine concentrations of 100 μM, 150 μM, and 200 μM. Additionally, nicotine was found to enhance Daf-16 nuclear translocation by 14, 31, and 49%, and dose-dependently increased SOD-3 expression by 10, 19, and 23%. In summary, the nicotine might a promising therapy option for Parkinson’s disease.\",\"PeriodicalId\":503985,\"journal\":{\"name\":\"Frontiers in Aging Neuroscience\",\"volume\":\"127 28\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Aging Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnagi.2024.1358141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Aging Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnagi.2024.1358141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病会导致多巴胺能神经元退化,α-突触核蛋白在黑质中堆积。帕金森病的合成疗法对症状有一定的疗效,但不能预防或延缓疾病的发展。本研究利用转基因秀丽隐杆线虫帕金森病模型,采用尼古丁来减轻帕金森病症状。结果显示,100、150和200 μM剂量的尼古丁可减少6-羟基多巴胺引起的多巴胺能神经元变性(14%、33%和40%),降低α-突触核蛋白的聚集毒性(53%、56%和78%)。据观察,尼古丁浓度为 100 μM、150 μM 和 200 μM 时,BZ555 的食物感应行为障碍分别减少了 18%、49% 和 86%。此外,尼古丁还能使 Daf-16 的核转位增加 14%、31% 和 49%,并能使 SOD-3 的表达增加 10%、19% 和 23%,这与剂量有关。总之,尼古丁可能是治疗帕金森病的一种有前途的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nicotine-mediated therapy for Parkinson’s disease in transgenic Caenorhabditis elegans model
Parkinson’s disease resultant in the degeneration of Dopaminergic neurons and accumulation of α-synuclein in the substantia nigra pars compacta. The synthetic therapeutics for Parkinson’s disease have moderate symptomatic benefits but cannot prevent or delay disease progression. In this study, nicotine was employed by using transgenic Caenorhabditis elegans Parkinson’s disease models to minimize the Parkinson’s disease symptoms. The results showed that the nicotine at 100, 150, and 200 μM doses reduced degeneration of Dopaminergic neurons caused by 6-hydroxydopamine (14, 33, and 40%), lowered the aggregative toxicity of α-synuclein by 53, 56, and 78%, respectively. The reduction in food-sensing behavioral disabilities of BZ555 was observed to be 18, 49, and 86%, respectively, with nicotine concentrations of 100 μM, 150 μM, and 200 μM. Additionally, nicotine was found to enhance Daf-16 nuclear translocation by 14, 31, and 49%, and dose-dependently increased SOD-3 expression by 10, 19, and 23%. In summary, the nicotine might a promising therapy option for Parkinson’s disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信