手写字符识别:比较研究

Aishani Sengupta, Anubrata Mukherjee, Tanaya Pal, Sourav Das
{"title":"手写字符识别:比较研究","authors":"Aishani Sengupta, Anubrata Mukherjee, Tanaya Pal, Sourav Das","doi":"10.48175/ijarsct-18260","DOIUrl":null,"url":null,"abstract":"Handwriting recognition is a technique used to interpret intelligible handwritten input and convert it into digital text using Machine Learning tools. This research paper provides a comparison of the application of CRNN and CNN for handwriting recognition, using a dataset containing about 370,000 handwritten names. Our experiments demonstrate that the CRNN hybrid model produces the highest accuracy compared to the CNN model. This paper summarises contributions reported on the A-Z Handwritten Alphabets in .csv format dataset for handwritten character recognition. This dataset has been extensively used to validate novel techniques in computer vision. This paper makes a distinction between those works using some kind of data augmentation and works using the original dataset","PeriodicalId":510160,"journal":{"name":"International Journal of Advanced Research in Science, Communication and Technology","volume":"136 48","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Handwritten Character Recognition: A Comparative Study\",\"authors\":\"Aishani Sengupta, Anubrata Mukherjee, Tanaya Pal, Sourav Das\",\"doi\":\"10.48175/ijarsct-18260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Handwriting recognition is a technique used to interpret intelligible handwritten input and convert it into digital text using Machine Learning tools. This research paper provides a comparison of the application of CRNN and CNN for handwriting recognition, using a dataset containing about 370,000 handwritten names. Our experiments demonstrate that the CRNN hybrid model produces the highest accuracy compared to the CNN model. This paper summarises contributions reported on the A-Z Handwritten Alphabets in .csv format dataset for handwritten character recognition. This dataset has been extensively used to validate novel techniques in computer vision. This paper makes a distinction between those works using some kind of data augmentation and works using the original dataset\",\"PeriodicalId\":510160,\"journal\":{\"name\":\"International Journal of Advanced Research in Science, Communication and Technology\",\"volume\":\"136 48\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Research in Science, Communication and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48175/ijarsct-18260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Science, Communication and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48175/ijarsct-18260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

手写识别是一种利用机器学习工具解释可理解的手写输入并将其转换为数字文本的技术。本研究论文使用包含约 370,000 个手写姓名的数据集,比较了 CRNN 和 CNN 在手写识别中的应用。我们的实验表明,与 CNN 模型相比,CRNN 混合模型的准确率最高。本文总结了 A-Z 手写字母(.csv 格式)数据集在手写字符识别方面的贡献。该数据集已被广泛用于验证计算机视觉领域的新技术。本文将使用某种数据增强技术的作品与使用原始数据集的作品区分开来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handwritten Character Recognition: A Comparative Study
Handwriting recognition is a technique used to interpret intelligible handwritten input and convert it into digital text using Machine Learning tools. This research paper provides a comparison of the application of CRNN and CNN for handwriting recognition, using a dataset containing about 370,000 handwritten names. Our experiments demonstrate that the CRNN hybrid model produces the highest accuracy compared to the CNN model. This paper summarises contributions reported on the A-Z Handwritten Alphabets in .csv format dataset for handwritten character recognition. This dataset has been extensively used to validate novel techniques in computer vision. This paper makes a distinction between those works using some kind of data augmentation and works using the original dataset
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信