Wanlian Lu , Yao Hu , Wangyong Chen , Yutao Qin , Chuliang Wu , Xinyi He
{"title":"通过分解和机器学习预测高速公路车辆检测器的交通流量","authors":"Wanlian Lu , Yao Hu , Wangyong Chen , Yutao Qin , Chuliang Wu , Xinyi He","doi":"10.1080/19427867.2024.2339631","DOIUrl":null,"url":null,"abstract":"<div><div>Traffic flow prediction is of significant importance in traffic planning. Currently, traffic flow data are primarily collected through loop detectors. However, factors such as road conditions can affect the accuracy of these data. To address this issue, this paper proposes a traffic flow prediction method based on decomposition and machine learning. The improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) method decomposes the sequence into multiple intrinsic mode functions (IMFs). The complexity of each IMF is calculated using the sample entropy (SE), and then the IMFs are reconstructed. Parameters of the variational mode decomposition (VMD) are optimized using the whale optimization algorithm (WOA) for the secondary decomposition, and predictions are made using gated recurrent units (GRU). Finally, the prediction results are reconstructed to obtain the final prediction values. In the case study section, experiments are conducted using datasets from three detectors to explore different decomposition forms and methods.</div></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"17 2","pages":"Pages 260-280"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic flow prediction for highway vehicle detectors through decomposition and machine learning\",\"authors\":\"Wanlian Lu , Yao Hu , Wangyong Chen , Yutao Qin , Chuliang Wu , Xinyi He\",\"doi\":\"10.1080/19427867.2024.2339631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traffic flow prediction is of significant importance in traffic planning. Currently, traffic flow data are primarily collected through loop detectors. However, factors such as road conditions can affect the accuracy of these data. To address this issue, this paper proposes a traffic flow prediction method based on decomposition and machine learning. The improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) method decomposes the sequence into multiple intrinsic mode functions (IMFs). The complexity of each IMF is calculated using the sample entropy (SE), and then the IMFs are reconstructed. Parameters of the variational mode decomposition (VMD) are optimized using the whale optimization algorithm (WOA) for the secondary decomposition, and predictions are made using gated recurrent units (GRU). Finally, the prediction results are reconstructed to obtain the final prediction values. In the case study section, experiments are conducted using datasets from three detectors to explore different decomposition forms and methods.</div></div>\",\"PeriodicalId\":48974,\"journal\":{\"name\":\"Transportation Letters-The International Journal of Transportation Research\",\"volume\":\"17 2\",\"pages\":\"Pages 260-280\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Letters-The International Journal of Transportation Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1942786724000353\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786724000353","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Traffic flow prediction for highway vehicle detectors through decomposition and machine learning
Traffic flow prediction is of significant importance in traffic planning. Currently, traffic flow data are primarily collected through loop detectors. However, factors such as road conditions can affect the accuracy of these data. To address this issue, this paper proposes a traffic flow prediction method based on decomposition and machine learning. The improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) method decomposes the sequence into multiple intrinsic mode functions (IMFs). The complexity of each IMF is calculated using the sample entropy (SE), and then the IMFs are reconstructed. Parameters of the variational mode decomposition (VMD) are optimized using the whale optimization algorithm (WOA) for the secondary decomposition, and predictions are made using gated recurrent units (GRU). Finally, the prediction results are reconstructed to obtain the final prediction values. In the case study section, experiments are conducted using datasets from three detectors to explore different decomposition forms and methods.
期刊介绍:
Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research.
The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.