A. Filippov, Oleg I Gnezdilov, Maiia Rudakova, Rustam Gimatdinov, Victor P. Arkhipov, Oleg N. Antzutkin
{"title":"微米间距板间硝酸离子液体的核磁共振研究","authors":"A. Filippov, Oleg I Gnezdilov, Maiia Rudakova, Rustam Gimatdinov, Victor P. Arkhipov, Oleg N. Antzutkin","doi":"10.59429/ace.v7i2.5462","DOIUrl":null,"url":null,"abstract":"This review paper presents the results of a study conducted using nuclear magnetic resonance (NMR) methods to investigate the dynamic behaviour of ionic liquid-based compositions in micrometre-spaced confinement. Ethylammonium nitrate (EAN) and other ionic liquid (IL) systems with nitrate anion in glass or quartz spaced confinement demonstrate anomalous cation dynamics that differ from those observed in bulk and in nano-confinement. It was demonstrated that the principal axis of the nitrate anion exhibits preferential orientation to the surface, akin to that in liquid crystals. It was shown that the cation translational mobility reversibly changes during exposure to a static magnetic field. This phenomenon was interpreted as a result of intermolecular structure transformations occurring in the confined ILs. The mechanisms of these transformations were discussed.","PeriodicalId":505470,"journal":{"name":"Applied Chemical Engineering","volume":"43 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NMR study of nitrate ionic liquids confined between micrometer-spaced plates\",\"authors\":\"A. Filippov, Oleg I Gnezdilov, Maiia Rudakova, Rustam Gimatdinov, Victor P. Arkhipov, Oleg N. Antzutkin\",\"doi\":\"10.59429/ace.v7i2.5462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review paper presents the results of a study conducted using nuclear magnetic resonance (NMR) methods to investigate the dynamic behaviour of ionic liquid-based compositions in micrometre-spaced confinement. Ethylammonium nitrate (EAN) and other ionic liquid (IL) systems with nitrate anion in glass or quartz spaced confinement demonstrate anomalous cation dynamics that differ from those observed in bulk and in nano-confinement. It was demonstrated that the principal axis of the nitrate anion exhibits preferential orientation to the surface, akin to that in liquid crystals. It was shown that the cation translational mobility reversibly changes during exposure to a static magnetic field. This phenomenon was interpreted as a result of intermolecular structure transformations occurring in the confined ILs. The mechanisms of these transformations were discussed.\",\"PeriodicalId\":505470,\"journal\":{\"name\":\"Applied Chemical Engineering\",\"volume\":\"43 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59429/ace.v7i2.5462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59429/ace.v7i2.5462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NMR study of nitrate ionic liquids confined between micrometer-spaced plates
This review paper presents the results of a study conducted using nuclear magnetic resonance (NMR) methods to investigate the dynamic behaviour of ionic liquid-based compositions in micrometre-spaced confinement. Ethylammonium nitrate (EAN) and other ionic liquid (IL) systems with nitrate anion in glass or quartz spaced confinement demonstrate anomalous cation dynamics that differ from those observed in bulk and in nano-confinement. It was demonstrated that the principal axis of the nitrate anion exhibits preferential orientation to the surface, akin to that in liquid crystals. It was shown that the cation translational mobility reversibly changes during exposure to a static magnetic field. This phenomenon was interpreted as a result of intermolecular structure transformations occurring in the confined ILs. The mechanisms of these transformations were discussed.