{"title":"I^3 中 THA 曲面的分类","authors":"B. Senoussi","doi":"10.31926/but.mif.2024.4.66.1.12","DOIUrl":null,"url":null,"abstract":"In classical differential geometry, the problem of obtaining Gaussian and mean curvatures of a surface is one of the most important problems. A surface M2 in I3 is a THA-surface of first type if it can be parameterized by r(s, t) = (s, t, Af(s + at)g(t) + B(f(s + at) + g(t))). A surface M2 in I3 is a THA- surface of second type if it can be parameterized by r(s, t) = (s, Af(s + at)g(t) + B(f(s + at) + g(t)), t), where A and B are non-zero real numbers [16, 17, 18]. In this paper, we classify two types THA-surfaces in the 3-dimensional isotropic space I3 and study THA-surfaces with zero curvature in I3.","PeriodicalId":505295,"journal":{"name":"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science","volume":"47 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifications of THA-surfaces in I^3\",\"authors\":\"B. Senoussi\",\"doi\":\"10.31926/but.mif.2024.4.66.1.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In classical differential geometry, the problem of obtaining Gaussian and mean curvatures of a surface is one of the most important problems. A surface M2 in I3 is a THA-surface of first type if it can be parameterized by r(s, t) = (s, t, Af(s + at)g(t) + B(f(s + at) + g(t))). A surface M2 in I3 is a THA- surface of second type if it can be parameterized by r(s, t) = (s, Af(s + at)g(t) + B(f(s + at) + g(t)), t), where A and B are non-zero real numbers [16, 17, 18]. In this paper, we classify two types THA-surfaces in the 3-dimensional isotropic space I3 and study THA-surfaces with zero curvature in I3.\",\"PeriodicalId\":505295,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science\",\"volume\":\"47 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2024.4.66.1.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2024.4.66.1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In classical differential geometry, the problem of obtaining Gaussian and mean curvatures of a surface is one of the most important problems. A surface M2 in I3 is a THA-surface of first type if it can be parameterized by r(s, t) = (s, t, Af(s + at)g(t) + B(f(s + at) + g(t))). A surface M2 in I3 is a THA- surface of second type if it can be parameterized by r(s, t) = (s, Af(s + at)g(t) + B(f(s + at) + g(t)), t), where A and B are non-zero real numbers [16, 17, 18]. In this paper, we classify two types THA-surfaces in the 3-dimensional isotropic space I3 and study THA-surfaces with zero curvature in I3.