当仅对一个因子的水平进行排序时,检验双因子固定效应方差分析中的水平-程度交互效应

Pub Date : 2024-05-15 DOI:10.3390/stats7020029
J. C. W. Rayner, G. C. Livingston
{"title":"当仅对一个因子的水平进行排序时,检验双因子固定效应方差分析中的水平-程度交互效应","authors":"J. C. W. Rayner, G. C. Livingston","doi":"10.3390/stats7020029","DOIUrl":null,"url":null,"abstract":"In testing for main effects, the use of orthogonal contrasts for balanced designs with the factor levels not ordered is well known. Here, we consider two-factor fixed-effects ANOVA with the levels of one factor ordered and one not ordered. The objective is to extend the idea of decomposing the main effect to decomposing the interaction. This is achieved by defining level–degree coefficients and testing if they are zero using permutation testing. These tests give clear insights into what may be causing a significant interaction, even for the unbalanced model.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing for Level–Degree Interaction Effects in Two-Factor Fixed-Effects ANOVA When the Levels of Only One Factor Are Ordered\",\"authors\":\"J. C. W. Rayner, G. C. Livingston\",\"doi\":\"10.3390/stats7020029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In testing for main effects, the use of orthogonal contrasts for balanced designs with the factor levels not ordered is well known. Here, we consider two-factor fixed-effects ANOVA with the levels of one factor ordered and one not ordered. The objective is to extend the idea of decomposing the main effect to decomposing the interaction. This is achieved by defining level–degree coefficients and testing if they are zero using permutation testing. These tests give clear insights into what may be causing a significant interaction, even for the unbalanced model.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/stats7020029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats7020029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在检验主效应时,众所周知,在因子水平不排序的平衡设计中使用正交对比。在此,我们考虑双因素固定效应方差分析,其中一个因素的水平是有序的,另一个因素的水平是无序的。目的是将分解主效应的想法扩展到分解交互作用。为此,我们定义了水平系数,并使用置换检验法检验这些系数是否为零。这些检验可以清楚地揭示可能导致显著交互作用的原因,即使对于非平衡模型也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Testing for Level–Degree Interaction Effects in Two-Factor Fixed-Effects ANOVA When the Levels of Only One Factor Are Ordered
In testing for main effects, the use of orthogonal contrasts for balanced designs with the factor levels not ordered is well known. Here, we consider two-factor fixed-effects ANOVA with the levels of one factor ordered and one not ordered. The objective is to extend the idea of decomposing the main effect to decomposing the interaction. This is achieved by defining level–degree coefficients and testing if they are zero using permutation testing. These tests give clear insights into what may be causing a significant interaction, even for the unbalanced model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信